.. automodule:: pykeen.models.unimodal
.. automodule:: pykeen.models.multimodal
[ali2020a] | Ali, M., et al. (2020). Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. arXiv, 2006.13365. |
[safavi2020] | Safavi, T. & Koutra, D. (2020). CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. arXiv, 2009.07810. |
[shi2017b] | Shi, B., & Weninger, T. (2017). Open-World Knowledge Graph Completion. arXiv, 1957–1964. |
[santos2020] | Santos, A., et al (2020). Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making. bioRxiv, 2020.05.09.084897. |
[speer2017] | Robyn Speer, Joshua Chin, and Catherine Havasi. (2017) ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In proceedings of AAAI 31. |
[breit2020] | Breit, A., et al (2020). OpenBioLink: A benchmarking framework for large-scale biomedical link prediction, Bioinformatics |
[ilievski2020] | Ilievski, F., Szekely, P., & Zhang, B. (2020). CSKG: The CommonSense Knowledge Graph. arxiv, 2012.11490. |
[himmelstein2017] | Himmelstein, D. S., et al (2017). Systematic integration of biomedical knowledge prioritizes drugs for repurposing. ELife, 6. |
[xu2019] | Xu, L (2019) A Comparison of Learned and Engineered Features in Network-Based Drug Repositioning. Master's Thesis. |
[santurkar2018] | Santurkar, S., et al. (2018). How does batch normalization help optimization?. Advances in Neural Information Processing Systems. |
[chao2020] | Chao, L., He, J., Wang, T., & Chu, W. (2020). PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. |
[ding2018] | Ding, B., Wang, Q., Wang, B., & Guo, L. (2018). Improving Knowledge Graph Embedding Using Simple Constraints. |
[balazevic2019b] | Balažević, I., Allen, C., & Hospedales, T. (2019). Multi-relational Poincaré Graph Embeddings. |
[fuhr2018] | Fuhr, N. (2018). Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum, 51(3), 32–41. |
[sakai2021] | Sakai, T. (2021). On Fuhr's Guideline for IR Evaluation. SIGIR Forum, 54(1), 1-8. |
[galkin2020] | Galkin, M., et al. (2020). Message Passing for Hyper-Relational Knowledge Graphs. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 7346–7359. |
[wang2019] | Wang, X., et al (2019). KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. arXiv, 1911.06136. |
[sun2018] | Sun, Z., et al. (2018). Bootstrapping Entity Alignment with Knowledge Graph Embedding. Proceedings of the 27th International Joint Conference on Artificial Intelligence, 4396–4402. |
[lin2018] | Lin, T.-Y., et al. (2017). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327. |
[mukhoti2020] | Mukhoti, J., et al. (2020). Calibrating Deep Neural Networks using Focal Loss. |
[walsh2020] | Walsh, B., et al. (2020). BioKG: A Knowledge Graph for Relational Learning On Biological Data. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 3173–3180. |
[nickel2016review] | Nickel, M., et al. (2016). A Review of Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE, 104(1), 11–33. |
[ruffinelli2020] | Ruffinelli, D., Broscheit, S., & Gemulla, R. (2020). You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings. International Conference on Learning Representations. |
[zhang2017] | Zhang, H., et al. (2017). Visual Translation Embedding Network for Visual Relation Detection. arXiv, 1702.08319. |
[sharifzadeh2019vrd] | Sharifzadeh, S., et al. (2019). Improving Visual Relation Detection using Depth Maps. arXiv, 1905.00966. |
[gal2016] | Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016. |
[zhang2020] | Zhang, Y., et al. (2020). AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. ICDE 2020, 433–444. |
[tucker1966] | Tucker, Ledyard R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika volume 31, 279–311. |
[ali2021] | Ali, M., et al (2021). Improving Inductive Link Prediction Using Hyper-relational Facts. ISWC 2021 |
[teru2020] | Teru, K., et al (2020). Inductive Relation Prediction by Subgraph Reasoning. ICML 2020 |
[zheng2020] | Zheng, S., et al (2020). PharmKG: a dedicated knowledge graph benchmark for biomedical data mining. Briefings in Bioinformatics 2020 |
[berrendorf2020] | Berrendorf, M., et al. (2020). On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link Prediction Methods. |
[yu2021] | Yu, L., et al (2021). TripleRE: Knowledge Graph Embeddings via triple Relation Vectors. viXra, 2112.0095. |
[hoyt2022] | Hoyt, C.T., et al. (2022) A Unified Framework for Rank-based Evaluation Metrics for Link Prediction in Knowledge Graphs. arXiv, 2203.07544. |
[chandak2022] | Chandak, P., et al (2022). Building a knowledge graph to enable precision medicine. bioRxiv, 2022.05.01.489928. |
[wang2022] | Wang, L., et al (2022). SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models. arXiv, 2203.02167. |
[thanapalasingam2021] | Thanapalasingam, T., et al (2021). Relational Graph Convolutional Networks: A Closer Look. arXiv, 2107.10015. |
[peng2020] | Y. Peng and J. Zhang (2020) LineaRE: Simple but Powerful Knowledge Graph Embedding for Link Prediction, 2020 IEEE International Conference on Data Mining (ICDM), pp. 422-431, doi: 10.1109/ICDM50108.2020.00051. |
[koenigs2022] | Königs, C., et al (2022) The heterogeneous pharmacological medical biochemical network PharMeBINet, Scientific Data, 9, 393. |