|
| 1 | +#!/usr/bin/env python3 |
| 2 | +"""Example script to evaluate models over time range with changes from the default parameter set |
| 3 | +This example sets different random seeds for each evaulation and collects the data into pandas dataframes |
| 4 | +Note that individual traces, interactions etc are not saved due to the large number of them. |
| 5 | +This is designed to be run to generate a stochastic window to gain a staticial interpretation of the model |
| 6 | +Run the senario once with full output on to enable detailed knowledge of the model |
| 7 | +""" |
| 8 | +from COVID19.model import Parameters, Model |
| 9 | +from tqdm import tqdm |
| 10 | +from multiprocessing.pool import ThreadPool |
| 11 | +from concurrent.futures import ProcessPoolExecutor |
| 12 | +import pandas as pd |
| 13 | +import random |
| 14 | +from pathlib import Path |
| 15 | + |
| 16 | +base_path = Path(__file__).parent.absolute() |
| 17 | +print(base_path) |
| 18 | + |
| 19 | +BASELINE_PARAMS = base_path / "../tests/data/baseline_parameters.csv" |
| 20 | +HOUSEHOLDS = base_path / "../tests/data/baseline_household_demographics.csv" |
| 21 | + |
| 22 | +def setup_parameters(d: dict=None, output_dir: str="./"): |
| 23 | + # Set up Parameters |
| 24 | + # Override defaults that we pass in input dict |
| 25 | + p = Parameters( |
| 26 | + input_param_file=str(BASELINE_PARAMS), |
| 27 | + param_line_number=1, |
| 28 | + output_file_dir=output_dir, |
| 29 | + input_household_file=str(HOUSEHOLDS), |
| 30 | + read_param_file=True, |
| 31 | + ) |
| 32 | + if d: |
| 33 | + for k, v in d.items(): |
| 34 | + p.set_param(k, v) |
| 35 | + return p |
| 36 | + |
| 37 | + |
| 38 | +def setup_model(d: dict=None, di:str=None): |
| 39 | + params = setup_parameters(di, d) |
| 40 | + params.set_param("sys_write_individual", 0) |
| 41 | + model = Model(params) |
| 42 | + return model |
| 43 | + |
| 44 | + |
| 45 | +def run_model(d: dict=None, di:str = None): |
| 46 | + m = setup_model(di,d) |
| 47 | + results = [] |
| 48 | + for _ in range(100): |
| 49 | + m.one_time_step() |
| 50 | + results.append(m.one_time_step_results()) |
| 51 | + return pd.DataFrame(results) |
| 52 | + |
| 53 | + |
| 54 | +def run_many_inline(parameter_set_list, processes=None, progress_bar=True): |
| 55 | + if progress_bar: |
| 56 | + progress_monitor = tqdm |
| 57 | + else: |
| 58 | + progress_monitor = lambda x: x |
| 59 | + |
| 60 | + # Create a pool and evaluate models concurrently |
| 61 | + with ThreadPool(processes=processes) as pool: |
| 62 | + |
| 63 | + outputs = list( |
| 64 | + progress_monitor( |
| 65 | + pool.imap(run_model, parameter_set_list), total=len(parameter_set_list) |
| 66 | + |
| 67 | + ) |
| 68 | + ) |
| 69 | + return outputs |
| 70 | + |
| 71 | + |
| 72 | +if __name__ == "__main__": |
| 73 | + |
| 74 | + print(BASELINE_PARAMS, HOUSEHOLDS) |
| 75 | + # Edit so we only run over 100k people, default is 1m but 10x speed increase for testing. |
| 76 | + # Remove n_total setting to run over larger population. |
| 77 | + params_list = [{"rng_seed": random.randint(0, 2**32 -1), "n_total": 100000} for x in range(100)] |
| 78 | + |
| 79 | + results_dataframes = run_many_inline(params_list, processes=None) |
| 80 | + |
| 81 | + # Ouput individual dataframes as CSVs |
| 82 | + for p, df in zip(params_list, results_dataframes): |
| 83 | + df.to_csv(f"./results/model_rng_seed_{p['rng_seed']}.csv") |
0 commit comments