@@ -120,4 +120,100 @@ def get_right_min_image_combinations(number_image_pairs_selected, image_data, im
120
120
image_combination_data = np .array (image_combination_data )
121
121
image_combination_labels = np .array (image_combination_labels )
122
122
123
- return image_combination_data , image_combination_labels
123
+ return image_combination_data , image_combination_labels
124
+
125
+
126
+ # Randomly select a defined number of image paires from a given dataset
127
+ # Always store the minimum image on the left
128
+ def get_left_min_image_combinations_separate (number_image_pairs_selected , image_data , image_labels ):
129
+
130
+ num_images_total = len (image_labels )
131
+
132
+ image_combination_data_A = []
133
+ image_combination_data_B = []
134
+
135
+ image_combination_labels = []
136
+
137
+ for i in range (number_image_pairs_selected ):
138
+
139
+ # Draw two image indices from a uniform random distribution
140
+ random_index_A = random .randint (0 , num_images_total - 1 )
141
+ random_index_B = random .randint (0 , num_images_total - 1 )
142
+
143
+ # Randomly choose two images from the dataset
144
+ image_A = image_data [random_index_A ]
145
+ image_B = image_data [random_index_B ]
146
+
147
+ # Find the minimum between the two labels
148
+ label_A = image_labels [random_index_A ]
149
+ label_B = image_labels [random_index_B ]
150
+ minimum_label = min (label_A , label_B )
151
+
152
+ if label_A < label_B :
153
+ # Here we want to exclude the images where they are the same on both sides
154
+ image_combination_data_A .append (image_A )
155
+ image_combination_data_B .append (image_B )
156
+
157
+ image_combination_labels .append (minimum_label )
158
+ elif label_A > label_B :
159
+ # Here we want to exclude the images where they are the same on both sides
160
+ image_combination_data_A .append (image_B )
161
+ image_combination_data_B .append (image_A )
162
+ image_combination_labels .append (minimum_label )
163
+
164
+ # Convert image data and labels lists to numpy arrays
165
+ image_combination_data_A = np .array (image_combination_data_A )
166
+ image_combination_data_B = np .array (image_combination_data_B )
167
+
168
+ image_combination_labels = np .array (image_combination_labels )
169
+
170
+ return image_combination_data_A , image_combination_data_B , image_combination_labels
171
+
172
+
173
+ # Randomly select a defined number of image paires from a given dataset
174
+ # Always store the minimum image on the left
175
+ def get_right_min_image_combinations_separate (number_image_pairs_selected , image_data , image_labels ):
176
+
177
+ num_images_total = len (image_labels )
178
+
179
+ image_combination_data_A = []
180
+ image_combination_data_B = []
181
+
182
+ image_combination_labels = []
183
+
184
+ for i in range (number_image_pairs_selected ):
185
+
186
+ # Draw two image indices from a uniform random distribution
187
+ random_index_A = random .randint (0 , num_images_total - 1 )
188
+ random_index_B = random .randint (0 , num_images_total - 1 )
189
+
190
+ # Randomly choose two images from the dataset
191
+ image_A = image_data [random_index_A ]
192
+ image_B = image_data [random_index_B ]
193
+
194
+ # Find the minimum between the two labels
195
+ label_A = image_labels [random_index_A ]
196
+ label_B = image_labels [random_index_B ]
197
+ minimum_label = min (label_A , label_B )
198
+
199
+ if label_A > label_B :
200
+ # Here we want to exclude the images where they are the same on both sides
201
+ image_combination_data_A .append (image_A )
202
+ image_combination_data_B .append (image_B )
203
+
204
+ image_combination_labels .append (minimum_label )
205
+
206
+ elif label_A < label_B :
207
+ # Here we want to exclude the images where they are the same on both sides
208
+ image_combination_data_A .append (image_B )
209
+ image_combination_data_B .append (image_A )
210
+
211
+ image_combination_labels .append (minimum_label )
212
+
213
+ # Convert image data and labels lists to numpy arrays
214
+ image_combination_data_A = np .array (image_combination_data_A )
215
+ image_combination_data_B = np .array (image_combination_data_B )
216
+
217
+ image_combination_labels = np .array (image_combination_labels )
218
+
219
+ return image_combination_data_A , image_combination_data_B , image_combination_labels
0 commit comments