-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
141 lines (123 loc) · 5.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import torch
import matplotlib.pyplot as plt
import pickle
import random
from dataset import get_dataset, get_handler
from models import get_net
from train import Train
from torchvision import transforms
from datetime import datetime
from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, accuracy_score, f1_score, precision_score, recall_score, fbeta_score, roc_curve, auc, roc_auc_score
import warnings
warnings.filterwarnings("ignore")
seed = 123
dataset_name = 'WILDCAM'
dataset_path = './data/wildcam_denoised'
args_pool = {
'WILDCAM': {
'n_restarts': 1,
'steps': 121,
'n_classes': 2,
'fc_only': True,
'model_path': "./models/",
'transform': {
'train': transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),
'test': transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
},
'loader_tr_args': {
'batch_size': 100,
'num_workers': 1
},
'loader_te_args': {
'batch_size': 100,
'num_workers': 1
},
'loader_sample_args': {
'batch_size': 100,
'num_workers': 1
},
'optimizer_args': {
'lr': 0.001,
'l2_regularizer_weight': 0.001,
'penalty_anneal_iters': 0, # make this 0 for ERM
'penalty_weight': 0.0 # make this 0 for ERM
}
}
}
args = args_pool[dataset_name]
model_name = "wildcam_denoised_" + str(args['steps']) + "_" + str(args['optimizer_args']['lr']) + "_" + str(args['optimizer_args']['penalty_anneal_iters']) + "_" + str(args['optimizer_args']['penalty_weight']) + "_"
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# load dataset
envs, x_test, y_test = get_dataset(dataset_name, dataset_path)
print("\nworking with", len(envs), "training environments: ")
for env in envs:
print("env['images']: ", len(env['images']))
print("env['labels']: ", env['labels'].shape[0])
unique, counts = np.unique(env['labels'], return_counts=True)
if counts[0] >= counts[1]:
baseline_acc = counts[0]/(counts[0]+counts[1])
print_statement = str(round(baseline_acc, 2)) + " (always coyote)."
else:
baseline_acc = counts[1]/(counts[0]+counts[1])
print_statement = str(round(baseline_acc, 2)) + " (always raccoon)."
print("class distribution: ", counts[0], "coyotes and", counts[1], "raccoons. baseline accuracy", print_statement)
print("x_test: ", len(x_test))
print("y_test: ", y_test.shape[0])
unique, counts = np.unique(y_test, return_counts=True)
if counts[0] >= counts[1]:
baseline_acc = counts[0]/(counts[0]+counts[1])
print_statement = str(round(baseline_acc, 2)) + " (always coyote)."
else:
baseline_acc = counts[0]/(counts[0]+counts[1])
print_statement = str(round(baseline_acc, 2)) + " (always coyote)."
print("test class distribution: ", counts[0], "coyotes and", counts[1], "raccoons. baseline accuracy", print_statement)
# get model and data handler
net = get_net(dataset_name)
handler = get_handler(dataset_name)
# GPU enabled?
print("Using GPU - {}".format(torch.cuda.is_available()))
final_train_accs = []
final_test_accs = []
train_process = Train(envs, x_test, y_test, net, handler, args)
print()
if args['optimizer_args']['penalty_weight'] > 1.0:
model_name = model_name + "IRM"
print("========================================IRM========================================")
else:
model_name = model_name + "ERM"
print("========================================ERM========================================")
print(args)
for restart in range(args['n_restarts']):
print("\nRestart", restart)
train_acc, test_acc, preds, probs = train_process.train()
preds = torch.reshape(preds, (-1,)).long().detach().cpu().numpy()
test_prec = precision_score(y_test, preds)
test_rec = recall_score(y_test, preds)
fpr, tpr, thresholds = roc_curve(y_test, probs)
roc_auc = roc_auc_score(y_test, probs)
final_train_accs.append(train_acc)
final_test_accs.append(test_acc)
print('Final train acc (mean/std across restarts so far):')
print(round(np.mean(final_train_accs), 3), round(np.std(final_train_accs), 3))
print('Final test acc (mean/std across restarts so far):')
print(round(np.mean(final_test_accs), 3), round(np.std(final_test_accs), 3))
print('Final test precision:')
print(round(test_prec, 4))
print('Final test recall:')
print(round(test_rec, 4))
print('confusion matrix:')
print(confusion_matrix(y_test.numpy(), preds))
tn, fp, fn, tp = confusion_matrix(y_test.numpy(), preds).ravel()
print(f'tn = {tn}, fp = {fp}, fn = {fn}, tp = {tp}')
torch.save(train_process.clf.state_dict(), args['model_path'] + model_name + ".pth")