-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommunication.py
executable file
·371 lines (288 loc) · 12.3 KB
/
communication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from typing import Dict, Tuple
import torch
import random
import torch.distributed as dist
from topologies import Topology
def is_dist_avail_and_initialized():
"""Copied from https://github.com/facebookresearch/deit/blob/main/utils.py"""
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
"""Copied from https://github.com/facebookresearch/deit/blob/main/utils.py"""
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
"""Copied from https://github.com/facebookresearch/deit/blob/main/utils.py"""
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def isend(*args, **kwargs):
if torch.cuda.is_available():
torch.cuda.synchronize()
return torch.distributed.isend(*args, **kwargs)
def recv(*args, **kwargs):
if torch.cuda.is_available():
torch.cuda.synchronize()
return torch.distributed.recv(*args, **kwargs)
def irecv(*args, **kwargs):
if torch.cuda.is_available():
torch.cuda.synchronize()
return torch.distributed.irecv(*args, **kwargs)
def pack(tensors):
"""Packs a list of tensors into one buffer for sending to other workers"""
buffer = torch.cat([t.view(-1) for t in tensors]) # copies
shapes = [tensor.shape for tensor in tensors]
return buffer, shapes
def unpack(buffer, shapes):
"""Provides pointers to tensors of original `shapes` in a flat-packed buffer."""
idx = 0
entries = []
for tensor_shape in shapes:
end = idx + tensor_shape.numel()
entries.append(buffer[idx:end].view(size=tensor_shape))
idx = end
return entries
def num_bytes(tensor):
return tensor.nelement() * tensor.element_size()
class MultiHandle:
def __init__(self, handles):
self.handles = handles
def wait(self):
for handle in self.handles:
handle.wait()
class RelayMechanism:
def __init__(
self,
topology: Topology,
overlap: bool = False,
normalization_mode: str = "world_size",
initial_state=None,
message_drop_prob=0,
tag: int = 2,
):
self._topology = topology
self._initial_state = initial_state
self._received_messages = {}
self._received_counts = {}
self._tag = tag
self._overlap = overlap
self._normalization_mode = normalization_mode
self._messages_per_worker = topology.max_degree
self._message_drop_prob = message_drop_prob
self._send_handle = None
self._last_sent_tensor = None
self.bytes_sent = 0
def send(self, tensor: torch.Tensor):
"""Send `tensor` to neighbors, relaying previously received messages"""
if self._overlap and self._last_sent_tensor is not None:
self._received_counts = recv_messages(
example_message=torch.tensor(1), topology=self._topology, tag=self._tag
)
self._received_messages = recv_messages(
example_message=self._last_sent_tensor,
topology=self._topology,
tag=self._tag,
)
# Randomly delete some messages for simulations of robustness
for key in list(self._received_counts.keys()):
if random.uniform(0, 1) < self._message_drop_prob:
del self._received_counts[key]
del self._received_messages[key]
self._send_handle.wait()
count_handle, delta_bytes_1 = isend_to_neighbors(
torch.tensor(1), self._topology, relay=self._received_counts, tag=self._tag
)
msg_handle, delta_bytes_2 = isend_to_neighbors(
tensor, self._topology, relay=self._received_messages, tag=self._tag
)
self._send_handle = MultiHandle([count_handle, msg_handle])
self._last_sent_tensor = tensor
self.bytes_sent += (delta_bytes_1 + delta_bytes_2) * self._messages_per_worker / self._topology.max_degree
def set_initial_state(self, tensor: torch.Tensor):
"""Set the fallback for when not enough messages arrive"""
self._initial_state.data = tensor.clone()
def receive_average(self):
"""Form an average from received message and the last sent tensor"""
assert self._last_sent_tensor is not None
count_tensor = torch.tensor(1)
avg_tensor = self._last_sent_tensor.clone()
if not self._overlap:
self._received_counts = recv_sum_into_tensor(
tensor=count_tensor, topology=self._topology, tag=self._tag
)
self._received_messages = recv_sum_into_tensor(
tensor=avg_tensor, topology=self._topology, tag=self._tag
)
# Randomly delete some messages for simulations of robustness
for key in list(self._received_counts.keys()):
if random.uniform(0, 1) < self._message_drop_prob:
count_tensor.sub_(self._received_counts[key])
del self._received_counts[key]
avg_tensor.sub_(self._received_messages[key])
del self._received_messages[key]
self._send_handle.wait()
else:
for count in self._received_counts.values():
count_tensor.add_(count)
for message in self._received_messages.values():
avg_tensor.add_(message)
if self._normalization_mode == "world_size":
num_workers = self._topology.num_workers
# Supplement missing values by 'initial state'.
# This will be 0 for RelaySum/Grad and x0 for RelaySum/Model.
if count_tensor < get_world_size() and self._initial_state is not None:
avg_tensor.add_(self._initial_state, alpha=num_workers - count_tensor)
avg_tensor.div_(num_workers)
elif self._normalization_mode == "counts":
avg_tensor.div_(count_tensor)
else:
raise ValueError(f"Unknown normalization mode {self._normalization_mode}")
return avg_tensor
class MultiTopologyRelayMechanism:
"""
Divide communication evenly over multiple topologies
"""
def __init__(self, topologies, **kwargs):
if not isinstance(topologies, list):
topologies = [topologies]
initial_state = kwargs.pop("initial_state", None)
if initial_state is None:
initial_states = [None for _ in topologies]
else:
initial_states = [initial_state[i::len(topologies)] for i in range(len(topologies))]
self._relays = [RelayMechanism(t, initial_state=s, **kwargs) for t, s in zip(topologies, initial_states)]
# Make sure the number of bytes sent is tracked in a representive way.
messages_per_worker = 0
for worker in range(topologies[0].num_workers):
avg_num_neighbors = sum(len(topo.neighbors(worker)) for topo in topologies) / len(topologies)
messages_per_worker = max(avg_num_neighbors, messages_per_worker)
print(f"We'll count {messages_per_worker} per worker.")
for r in self._relays:
r._messages_per_worker = messages_per_worker
def send(self, tensor: torch.Tensor):
if len(self._relays) == 1:
return self._relays[0].send(tensor)
else:
self._last_sent = tensor
for i, relay in enumerate(self._relays):
relay.send(tensor[i::len(self._relays)])
def set_initial_state(self, tensor: torch.Tensor):
if len(self._relays) == 1:
return self._relays[0].set_initial_state(tensor)
else:
self._last_sent = tensor
for i, relay in enumerate(self._relays):
relay.set_initial_state(tensor[i::len(self._relays)])
def receive_average(self):
if len(self._relays) == 1:
return self._relays[0].receive_average()
else:
avg_tensor = torch.empty_like(self._last_sent)
for i, relay in enumerate(self._relays):
avg_tensor[i::len(self._relays)] = relay.receive_average()
return avg_tensor
@property
def bytes_sent(self):
return sum(r.bytes_sent for r in self._relays)
class GossipMechanism:
def __init__(
self,
topology: Topology,
gossip_matrix = None,
message_drop_prob=0,
tag: int = 2,
):
self._topology = topology
self._w = gossip_matrix if gossip_matrix is not None else topology.gossip_matrix()
self._message_drop_prob = message_drop_prob
self._tag = tag
self.bytes_sent = 0
def send(self, tensor: torch.Tensor):
self._send_handle, delta_bytes = isend_to_neighbors(
tensor, self._topology, tag=self._tag
)
self._last_sent_tensor = tensor.clone()
self.bytes_sent += delta_bytes
def gossip_update(self, tensor: torch.Tensor):
"""Changes tensor in-place"""
assert self._last_sent_tensor is not None
rank = get_rank()
tensor.sub_(self._last_sent_tensor, alpha = 1-self._w[rank, rank])
total_weight = self._w[rank, rank].clone()
recv_buffer = torch.empty_like(tensor)
for neighbor in self._topology.neighbors(rank):
recv(recv_buffer, neighbor, tag=self._tag)
if self._message_drop_prob == 0 or random.uniform(0, 1) > self._message_drop_prob:
tensor.add_(recv_buffer, alpha=self._w[rank, neighbor])
total_weight += self._w[rank, neighbor]
# If not all messages arrived, we should re-normalize
if total_weight < 1:
tensor.mul_(1/total_weight)
self._send_handle.wait()
class MultiTopologyGossipMechanism:
"""
Divide communication evenly over multiple topologies
"""
def __init__(self, topologies, **kwargs):
if not isinstance(topologies, list):
topologies = [topologies]
self._gossips = [GossipMechanism(t, **kwargs) for t in topologies]
def send(self, tensor: torch.Tensor):
if len(self._gossips) == 1:
return self._gossips[0].send(tensor)
else:
for i, gossip in enumerate(self._gossips):
gossip.send(tensor[i::len(self._gossips)])
def gossip_update(self, tensor: torch.Tensor):
"""Changes tensor in-place"""
if len(self._gossips) == 1:
return self._gossips[0].gossip_update(tensor)
else:
for i, gossip in enumerate(self._gossips):
gossip.gossip_update(tensor[i::len(self._gossips)])
@property
def bytes_sent(self):
return sum(g.bytes_sent for g in self._gossips)
def isend_to_neighbors(
buffer, topology: Topology, relay: Dict[int, torch.Tensor] = {}, tag=2
):
handles = []
neighbors = topology.neighbors(get_rank())
for neighbor in neighbors:
total_relay = sum(
msg for msg_origin, msg in relay.items() if msg_origin != neighbor
)
handle = isend(buffer + total_relay, neighbor, tag=tag)
handles.append(handle)
bytes_sent = num_bytes(buffer) * topology.max_degree # worst case
return MultiHandle(handles), bytes_sent
def irecv_messages(
example_message: torch.Tensor, topology: Topology, tag=2
) -> Dict[int, torch.Tensor]:
"""Receive one message from each neighbor"""
received_messages = {}
handles = []
for neighbor in topology.neighbors(get_rank()):
received_messages[neighbor] = torch.empty_like(example_message)
handle = irecv(received_messages[neighbor], neighbor, tag=tag)
handles.append(handle)
return received_messages, MultiHandle(handles)
def recv_messages(
example_message: torch.Tensor, topology: Topology, tag=2
) -> Dict[int, torch.Tensor]:
"""Receive one message from each neighbor"""
received_messages, handle = irecv_messages(example_message, topology, tag)
handle.wait()
return received_messages
def recv_sum_into_tensor(
tensor: torch.Tensor, topology: Topology, tag=2
) -> Tuple[torch.Tensor, Dict[int, torch.Tensor]]:
"""Add a message from all neighbors to `tensor` (in place)"""
received_messages = recv_messages(tensor, topology, tag=tag)
for msg in received_messages.values():
tensor.add_(msg)
return received_messages