-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcifar-tree.py
executable file
·70 lines (61 loc) · 2.23 KB
/
cifar-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python3
import os
import json
import subprocess
from shared import remote_exec, register_job, mongo, upload_code_package
code_package = upload_code_package()
gpus_per_node = 4
num_workers = 16
experiment = os.path.splitext(os.path.basename(__file__))[0]
description = "Checking VGG-11/Cifar-10 performance on optimized toplogies (still 16 workers)"
base_config = {
"learning_rate": 0.16,
"momentum": 0.9,
"task": "Cifar",
"num_lr_warmup_epochs": 0,
"topology": "3-tree",
"batch_size": 32,
"distributed_world_size": num_workers,
"gpus_per_node": gpus_per_node,
"non_iid_alpha": 0.1,
"weight_decay": 1e-4,
}
for algorithm, overlap, momentum in [
("relaysum-model", False, 0.9),
("relaysum-grad", True, 0),
("push-sum", False, 0.9),
("gossip", False, 0),
("gossip", False, 0.9),
("quasi-global-momentum", False, 0.9),
("all-reduce", False, 0.9),
]:
config = {**base_config, "algorithm": algorithm, "overlap_communication": overlap, "momentum": momentum}
if algorithm == "all-reduce":
config["topology"] = "fully-connected"
elif algorithm == "relaysum-mix":
config["consensus_strength"] = 0.5
elif algorithm == "push-sum":
config["topology"] = "exponential"
if algorithm == "relaysum-model":
config["learning_rate"] *= 3
if algorithm == "quasi-global-momentum":
config["learning_rate"] /= 4
if momentum == 0:
config["learning_rate"] /= 2
topology = config["topology"]
job_name = f"{algorithm}-overlap{overlap}-mom{momentum}-{topology}"
if mongo.job.count_documents({"job": job_name, "experiment": experiment}) > 0:
# We have this one already
continue
job_id = register_job(
user="anonymized",
project="average-routing",
experiment=experiment,
job=job_name,
priority=10,
n_workers=num_workers,
config_overrides=config,
runtime_environment={"clone": {"code_package": code_package}, "script": "train.py"},
annotations={"description": description},
)
remote_exec(f'sbatch --nodes 1 --ntasks {num_workers} --gres gpu:{gpus_per_node} --cpus-per-task 2 --job-name="{job_name}" --wrap="srun jobrun {job_id} --mpi"')