Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ArrayDataProvider returns TypeError #205

Closed
machiningcentre opened this issue Feb 23, 2017 · 5 comments
Closed

ArrayDataProvider returns TypeError #205

machiningcentre opened this issue Feb 23, 2017 · 5 comments

Comments

@machiningcentre
Copy link

ArrayDataProvider returns TypeError when using Images.jl.

julia> using Images
julia> using MXNet
julia> X = rand(10,10);
julia> p = mx.ArrayDataProvider(X)
ERROR: TypeError: #ArrayDataProvider#6688: in new, expected Array{Array{Float32,N},1}, got Array{Array{Float32,N},1}
 in #ArrayDataProvider#6688(::Int64, ::Bool, ::Int64, ::Int64, ::Type{T}, ::Array{Float64,2}, ::Array{Any,1}) at ~/.julia/v0.5/MXNet/src/io.jl:351
 in (::Core.#kw#Type)(::Array{Any,1}, ::Type{MXNet.mx.ArrayDataProvider}, ::Array{Float64,2}, ::Array{Any,1}) at ./<missing>:0
 in MXNet.mx.ArrayDataProvider(::Array{Float64,2}) at ~/.julia/v0.5/MXNet/src/io.jl:277

There is no problem without Images.jl.

julia> using MXNet
julia> X = rand(10,10);
julia> p = mx.ArrayDataProvider(X)
MXNet.mx.ArrayDataProvider(Array{Float32,N}[
Float32[0.415866 0.112956 … 0837056 0.398794; 0.590402 0.334468 … 0515418 0.200105; … ; 0.3765410.337045 … 0.677437 0.31439; 0.761557 0.601104 … 0.7393450.0729888]],Symbol[:data],Array{Float32,N}[],Symbol[],10,10,false,0.0f0,0.0f0,MXNet.mx.NDArray[mx.NDArray{Float32}(10,10)],MXNet.mx.NDArray[])

Julia version and the package status are as follows:

julia> versioninfo()                                        
Julia Version 0.5.0                                         
Commit 3c9d753 (2016-09-19 18:14 UTC)                       
Platform Info:                                              
  System: Linux (x86_64-pc-linux-gnu)                       
  CPU: Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz            
  WORD_SIZE: 64                                             
  BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)
  LAPACK: libopenblas64_                                    
  LIBM: libopenlibm                                         
  LLVM: libLLVM-3.7.1 (ORCJIT, haswell)                     
                                                            
julia> Pkg.status("MXNet")                                  
 - MXNet                         0.2.1                      
                                                            
julia> Pkg.status("Images")                                 
 - Images                        0.7.0                      
@machiningcentre machiningcentre changed the title ArrayDataProvider returns TypeError with Images.jl ArrayDataProvider returns TypeError Feb 23, 2017
@pluskid
Copy link
Member

pluskid commented Mar 3, 2017

I can confirm this error. However, I do not understand the error message or why such an error is thrown out. Maybe we should open an issue in the Julia repo or Images.jl repo to see if anyone would know what is the issue here.

@xafilox
Copy link

xafilox commented Apr 6, 2017

Hi. I'm having the same problem. Any news about it? Were you able to solve it?

@vchuravy
Copy link
Collaborator

vchuravy commented Apr 6, 2017

What version of Julia are you using? What is you Pkg.status()? I noticed this as well and it might be related to JuliaLang/julia#18465

cc: @timholy

@xafilox
Copy link

xafilox commented Apr 7, 2017

Hi. My version and packages are the following:

Julia Version 0.5.0
Commit 3c9d753 (2016-09-19 18:14 UTC)
Platform Info:
System: Linux (x86_64-linux-gnu)
CPU: Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz
WORD_SIZE: 64
BLAS: libopenblas (NO_LAPACKE DYNAMIC_ARCH NO_AFFINITY Haswell)
LAPACK: liblapack.so.3
LIBM: libopenlibm
LLVM: libLLVM-3.7.1 (ORCJIT, broadwell)

17 required packages:

  • ArrayFire 0.0.4
  • Feather 0.2.5
  • Gadfly 0.6.0
  • GraphViz 0.1.0
  • IJulia 1.4.1
  • ImageMagick 0.2.3
  • JLD 0.6.10
  • MXNet 0.2.1
  • MultivariateStats 0.3.1
  • Plots 0.10.3
  • Query 0.3.2
  • RDatasets 0.2.0
  • Requests 0.4.1
  • StructuredQueries 0.0.4
  • TensorFlow 0.5.1
  • XGBoost 0.2.0
  • ZipFile 0.3.0
    83 additional packages:
  • AxisAlgorithms 0.1.6
  • BinDeps 0.4.7
  • Blosc 0.2.0
  • BufferedStreams 0.3.2
  • Calculus 0.2.2
  • CategoricalArrays 0.1.3
  • Codecs 0.3.0
  • ColorTypes 0.4.0
  • Colors 0.7.3
  • Compat 0.22.0
  • Compose 0.4.5
  • Conda 0.5.3
  • Contour 0.2.0
  • DataArrays 0.3.12
  • DataFrames 0.9.0
  • DataStreams 0.1.3
  • DataStructures 0.5.3
  • DiffBase 0.1.0
  • Distances 0.4.1
  • Distributions 0.12.2
  • DocStringExtensions 0.3.2
  • Documenter 0.9.2
  • DualNumbers 0.3.0
  • FileIO 0.3.1
  • FixedPointNumbers 0.3.6
  • FixedSizeArrays 0.2.5
  • FlatBuffers 0.2.0
  • Formatting 0.2.1
  • ForwardDiff 0.4.1
  • FunctionWrappers 0.0.1
  • GZip 0.3.0
  • Graphics 0.2.0
  • HDF5 0.8.0
  • Hexagons 0.0.4
  • Hiccup 0.1.1
  • HttpCommon 0.2.7
  • HttpParser 0.2.0
  • ImageCore 0.2.1
  • Interpolations 0.3.8
  • Iterators 0.3.0
  • JSON 0.8.3
  • Juno 0.2.7
  • KernelDensity 0.3.2
  • LegacyStrings 0.2.1
  • Libz 0.2.4
  • LineSearches 0.1.5
  • Loess 0.1.0
  • MNIST 0.0.2
  • MacroTools 0.3.6
  • MappedArrays 0.0.7
  • MbedTLS 0.4.5
  • Measures 0.0.3
  • Media 0.2.6
  • NaNMath 0.2.4
  • NamedTuples 1.0.0
  • Nettle 0.3.0
  • NullableArrays 0.1.0
  • OffsetArrays 0.2.14
  • Optim 0.7.8
  • PDMats 0.5.6
  • PlotThemes 0.1.1
  • PlotUtils 0.3.0
  • PositiveFactorizations 0.0.4
  • ProtoBuf 0.4.0
  • PyCall 1.11.1
  • QuadGK 0.1.2
  • RData 0.0.4
  • Ratios 0.0.4
  • RecipesBase 0.1.0
  • Reexport 0.0.3
  • Requires 0.3.0
  • Rmath 0.1.6
  • SHA 0.3.2
  • ShowItLikeYouBuildIt 0.0.1
  • Showoff 0.0.7
  • SortingAlgorithms 0.1.1
  • SpecialFunctions 0.1.1
  • StatsBase 0.13.1
  • StatsFuns 0.4.0
  • URIParser 0.1.8
  • WeakRefStrings 0.2.0
  • WoodburyMatrices 0.2.2
  • ZMQ 0.4.2

@vchuravy
Copy link
Collaborator

I can confirm that this happens on 0.5.1. as well so it is unrelated to the issue I noted above.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants