-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathnr_model.py
122 lines (94 loc) · 3.48 KB
/
nr_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import chainer
from chainer import Variable
import chainer.functions as F
import chainer.links as L
from chainer import cuda
from chainer import optimizers
from chainer import serializers
cuda.check_cuda_available()
xp = cuda.cupy
class Model(chainer.Chain):
def __init__(self, top = "patchwise"):
super(Model, self).__init__(
conv1 = L.Convolution2D(3, 32, 3, pad=1),
conv2 = L.Convolution2D(32, 32, 3, pad=1),
conv3 = L.Convolution2D(32, 64, 3, pad=1),
conv4 = L.Convolution2D(64, 64, 3, pad=1),
conv5 = L.Convolution2D(64, 128, 3, pad=1),
conv6 = L.Convolution2D(128, 128, 3, pad=1),
conv7 = L.Convolution2D(128, 256, 3, pad=1),
conv8 = L.Convolution2D(256, 256, 3, pad=1),
conv9 = L.Convolution2D(256, 512, 3, pad=1),
conv10 = L.Convolution2D(512, 512, 3, pad=1),
fc1 = L.Linear(512, 512),
fc2 = L.Linear(512, 1),
fc1_a = L.Linear(512, 512),
fc2_a = L.Linear(512, 1)
)
self.top = top
def forward(self, x_data, y_data, train=True, n_patches=32):
if not isinstance(x_data, Variable):
x = Variable(x_data)
else:
x = x_data
x_data = x.data
self.n_images = y_data.shape[0]
self.n_patches = x_data.shape[0]
self.n_patches_per_image = self.n_patches / self.n_images
h = F.relu(self.conv1(x))
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(h,2)
h = F.relu(self.conv3(h))
h = F.relu(self.conv4(h))
h = F.max_pooling_2d(h,2)
h = F.relu(self.conv5(h))
h = F.relu(self.conv6(h))
h = F.max_pooling_2d(h,2)
h = F.relu(self.conv7(h))
h = F.relu(self.conv8(h))
h = F.max_pooling_2d(h,2)
h = F.relu(self.conv9(h))
h = F.relu(self.conv10(h))
h = F.max_pooling_2d(h,2)
h_ = h
self.h = h_
h = F.dropout(F.relu(self.fc1(h_)), ratio=0.5)
h = self.fc2(h)
if self.top == "weighted":
a = F.dropout(F.relu(self.fc1_a(h_)), ratio=0.5)
a = F.relu(self.fc2_a(a))+0.000001
t = Variable(y_data)
self.weighted_loss(h, a, t)
elif self.top == "patchwise":
a = Variable(xp.ones_like(h.data))
t = Variable(xp.repeat(y_data, n_patches))
self.patchwise_loss(h, a, t)
if train:
return self.loss
else:
return self.loss, self.y
def patchwise_loss(self, h, a, t):
self.loss = F.sum(abs(h - F.reshape(t, (-1,1))))
self.loss /= self.n_patches
if self.n_images > 1:
h = F.split_axis(h, self.n_images, 0)
a = F.split_axis(a, self.n_images, 0)
else:
h, a = [h], [a]
self.y = h
self.a = a
def weighted_loss(self, h, a, t):
self.loss = 0
if self.n_images > 1:
h = F.split_axis(h, self.n_images, 0)
a = F.split_axis(a, self.n_images, 0)
t = F.split_axis(t, self.n_images, 0)
else:
h, a, t = [h], [a], [t]
for i in range(self.n_images):
y = F.sum(h[i]*a[i], 0) / F.sum(a[i], 0)
self.loss += abs(y - F.reshape(t[i], (1,)))
self.loss /= self.n_images
self.y = h
self.a = a