|
17 | 17 | package org.apache.spark.sql.delta.perf
|
18 | 18 |
|
19 | 19 | import org.apache.spark.sql.catalyst.InternalRow
|
20 |
| -import org.apache.spark.sql.catalyst.expressions.{Alias, Literal} |
21 |
| -import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, Complete, Count} |
| 20 | +import org.apache.spark.sql.catalyst.expressions.{Alias, AttributeReference, Literal} |
| 21 | +import org.apache.spark.sql.catalyst.expressions.aggregate._ |
22 | 22 | import org.apache.spark.sql.catalyst.planning.PhysicalOperation
|
23 | 23 | import org.apache.spark.sql.catalyst.plans.logical._
|
24 |
| -import org.apache.spark.sql.delta.DeltaTable |
| 24 | +import org.apache.spark.sql.catalyst.util.{CaseInsensitiveMap, DateTimeUtils} |
| 25 | +import org.apache.spark.sql.delta.{DeltaColumnMapping, DeltaTable, Snapshot} |
25 | 26 | import org.apache.spark.sql.delta.files.TahoeLogFileIndex
|
26 | 27 | import org.apache.spark.sql.delta.stats.DeltaScanGenerator
|
27 |
| -import org.apache.spark.sql.functions.{coalesce, col, count, lit, sum, when} |
| 28 | +import org.apache.spark.sql.functions._ |
| 29 | +import org.apache.spark.sql.types._ |
| 30 | + |
| 31 | +import scala.collection.immutable.HashSet |
28 | 32 |
|
29 | 33 | trait OptimizeMetadataOnlyDeltaQuery {
|
30 | 34 | def optimizeQueryWithMetadata(plan: LogicalPlan): LogicalPlan = {
|
31 | 35 | plan.transformUpWithSubqueries {
|
32 |
| - case agg@CountStarDeltaTable(countValue) => |
33 |
| - LocalRelation(agg.output, Seq(InternalRow(countValue))) |
| 36 | + case agg@AggregateDeltaTable(tahoeLogFileIndex) => |
| 37 | + createLocalRelationPlan(agg, tahoeLogFileIndex) |
34 | 38 | }
|
35 | 39 | }
|
36 | 40 |
|
37 | 41 | protected def getDeltaScanGenerator(index: TahoeLogFileIndex): DeltaScanGenerator
|
38 | 42 |
|
39 |
| - object CountStarDeltaTable { |
40 |
| - def unapply(plan: Aggregate): Option[Long] = plan match { |
41 |
| - case Aggregate( |
42 |
| - Nil, |
43 |
| - Seq(Alias(AggregateExpression(Count(Seq(Literal(1, _))), Complete, false, None, _), _)), |
44 |
| - PhysicalOperation(_, Nil, DeltaTable(i: TahoeLogFileIndex))) if i.partitionFilters.isEmpty |
45 |
| - => extractGlobalCount(i) |
| 43 | + protected def createLocalRelationPlan( |
| 44 | + plan: Aggregate, |
| 45 | + tahoeLogFileIndex: TahoeLogFileIndex): LogicalPlan = { |
| 46 | + val rowCount = extractGlobalCount(tahoeLogFileIndex) |
| 47 | + |
| 48 | + if (rowCount.isDefined) { |
| 49 | + lazy val columnStats = extractGlobalColumnStats(tahoeLogFileIndex) |
| 50 | + |
| 51 | + val aggregatedValues = plan.aggregateExpressions.collect { |
| 52 | + case Alias(AggregateExpression( |
| 53 | + Count(Seq(Literal(1, _))), Complete, false, None, _), _) => |
| 54 | + rowCount.get |
| 55 | + case Alias(AggregateExpression( |
| 56 | + Min(minReference: AttributeReference), Complete, false, None, _), _) |
| 57 | + if columnStats.contains(minReference.name) && |
| 58 | + // Avoid StructType, it is not supported by this optimization |
| 59 | + // Sanity check only. minReference would be GetStructType if it is a Struct column |
| 60 | + minReference.references.size == 1 && |
| 61 | + minReference.references.head.dataType != StructType => |
| 62 | + val value = if (minReference.dataType == DateType |
| 63 | + && columnStats(minReference.name).min != null) { |
| 64 | + DateTimeUtils.fromJavaDate( |
| 65 | + columnStats(minReference.name).min.asInstanceOf[java.sql.Date]) |
| 66 | + } else { |
| 67 | + columnStats(minReference.name).min |
| 68 | + } |
| 69 | + value |
| 70 | + case Alias(AggregateExpression( |
| 71 | + Max(maxReference: AttributeReference), Complete, false, None, _), _) |
| 72 | + if columnStats.contains(maxReference.name) && |
| 73 | + // Avoid StructType, it is not supported by this optimization |
| 74 | + // Sanity check only. maxReference would be GetStructType if it is a Struct column |
| 75 | + maxReference.references.size == 1 && |
| 76 | + maxReference.references.head.dataType != StructType => |
| 77 | + val value = if (maxReference.dataType == DateType |
| 78 | + && columnStats(maxReference.name).max != null) { |
| 79 | + DateTimeUtils.fromJavaDate( |
| 80 | + columnStats(maxReference.name).max.asInstanceOf[java.sql.Date]) |
| 81 | + } else { |
| 82 | + columnStats(maxReference.name).max |
| 83 | + } |
| 84 | + value |
| 85 | + } |
| 86 | + |
| 87 | + if (plan.aggregateExpressions.size == aggregatedValues.size) { |
| 88 | + val r = LocalRelation( |
| 89 | + plan.output, |
| 90 | + Seq(InternalRow.fromSeq(aggregatedValues))) |
| 91 | + r |
| 92 | + } else { |
| 93 | + plan |
| 94 | + } |
| 95 | + } |
| 96 | + else { |
| 97 | + plan |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | + object AggregateDeltaTable { |
| 102 | + def unapply(plan: Aggregate): Option[TahoeLogFileIndex] = plan match { |
| 103 | + case Aggregate(Nil, |
| 104 | + seqTest: Seq[Alias], |
| 105 | + PhysicalOperation(projectList, Nil, DeltaTable(i: TahoeLogFileIndex))) |
| 106 | + if i.partitionFilters.isEmpty |
| 107 | + && projectList.forall { |
| 108 | + case _: AttributeReference => true |
| 109 | + // Disable the optimization if Project is renaming the column |
| 110 | + // to avoid getting the incorrect column from stats, example: |
| 111 | + // SELECT MAX(Column2) FROM (SELECT Column1 AS Column2 FROM TableName) |
| 112 | + // We could create a mapping (alias -> actual name) to avoid the problem |
| 113 | + case a@Alias(_, _) => a.child.references.size == 1 && |
| 114 | + a.name.equals(a.child.references.head.name) |
| 115 | + case _ => false |
| 116 | + } |
| 117 | + && seqTest.forall { |
| 118 | + case Alias(AggregateExpression( |
| 119 | + Count(Seq(Literal(1, _))) | Min(_) | Max(_), Complete, false, None, _), _) => true |
| 120 | + case _ => false |
| 121 | + } => |
| 122 | + Some(i) |
| 123 | + // When all columns are selected, there are no Project/PhysicalOperation |
| 124 | + case Aggregate(Nil, |
| 125 | + seqTest: Seq[Alias], |
| 126 | + DeltaTable(i: TahoeLogFileIndex)) |
| 127 | + if i.partitionFilters.isEmpty |
| 128 | + && seqTest.forall { |
| 129 | + case Alias(AggregateExpression( |
| 130 | + Count(Seq(Literal(1, _))) | Min(_) | Max(_), Complete, false, None, _), _) => true |
| 131 | + case _ => false |
| 132 | + } => |
| 133 | + Some(i) |
46 | 134 | case _ => None
|
47 | 135 | }
|
| 136 | + } |
| 137 | + |
| 138 | + /** Return the number of rows in the table or `None` if we cannot calculate it from stats */ |
| 139 | + private def extractGlobalCount(tahoeLogFileIndex: TahoeLogFileIndex): Option[Long] = { |
| 140 | + // account for deleted rows according to deletion vectors |
| 141 | + val dvCardinality = coalesce(col("deletionVector.cardinality"), lit(0)) |
| 142 | + val numLogicalRecords = (col("stats.numRecords") - dvCardinality).as("numLogicalRecords") |
| 143 | + val row = getDeltaScanGenerator(tahoeLogFileIndex).filesWithStatsForScan(Nil) |
| 144 | + .agg( |
| 145 | + sum(numLogicalRecords), |
| 146 | + // Calculate the number of files missing `numRecords` |
| 147 | + count(when(col("stats.numRecords").isNull, 1))) |
| 148 | + .first |
| 149 | + |
| 150 | + // The count agg is never null. A non-zero value means we have incomplete stats; otherwise, |
| 151 | + // the sum agg is either null (for an empty table) or gives an accurate record count. |
| 152 | + if (row.getLong(1) > 0) return None |
| 153 | + val numRecords = if (row.isNullAt(0)) 0 else row.getLong(0) |
| 154 | + Some(numRecords) |
| 155 | + } |
| 156 | + |
| 157 | + val columnStatsSupportedDataTypes: HashSet[DataType] = HashSet( |
| 158 | + ByteType, |
| 159 | + ShortType, |
| 160 | + IntegerType, |
| 161 | + LongType, |
| 162 | + FloatType, |
| 163 | + DoubleType, |
| 164 | + DateType) |
| 165 | + |
| 166 | + case class DeltaColumnStat( |
| 167 | + min: Any, |
| 168 | + max: Any, |
| 169 | + nullCount: Option[Long], |
| 170 | + distinctCount: Option[Long]) |
| 171 | + |
| 172 | + def extractGlobalColumnStats(tahoeLogFileIndex: TahoeLogFileIndex): |
| 173 | + CaseInsensitiveMap[DeltaColumnStat] = { |
| 174 | + |
| 175 | + // TODO Update this to work with DV (https://github.com/delta-io/delta/issues/1485) |
| 176 | + |
| 177 | + val deltaScanGenerator = getDeltaScanGenerator(tahoeLogFileIndex) |
| 178 | + val snapshot = deltaScanGenerator.snapshotToScan |
| 179 | + |
| 180 | + def extractGlobalColumnStatsDeltaLog(snapshot: Snapshot): |
| 181 | + Map[String, DeltaColumnStat] = { |
| 182 | + |
| 183 | + val dataColumns = snapshot.statCollectionSchema |
| 184 | + .filter(col => columnStatsSupportedDataTypes.contains(col.dataType)) |
48 | 185 |
|
49 |
| - /** Return the number of rows in the table or `None` if we cannot calculate it from stats */ |
50 |
| - private def extractGlobalCount(tahoeLogFileIndex: TahoeLogFileIndex): Option[Long] = { |
51 |
| - // account for deleted rows according to deletion vectors |
52 |
| - val dvCardinality = coalesce(col("deletionVector.cardinality"), lit(0)) |
53 |
| - val numLogicalRecords = (col("stats.numRecords") - dvCardinality).as("numLogicalRecords") |
54 |
| - |
55 |
| - val row = getDeltaScanGenerator(tahoeLogFileIndex).filesWithStatsForScan(Nil) |
56 |
| - .agg( |
57 |
| - sum(numLogicalRecords), |
58 |
| - // Calculate the number of files missing `numRecords` |
59 |
| - count(when(col("stats.numRecords").isNull, 1))) |
60 |
| - .first |
61 |
| - |
62 |
| - // The count agg is never null. A non-zero value means we have incomplete stats; otherwise, |
63 |
| - // the sum agg is either null (for an empty table) or gives an accurate record count. |
64 |
| - if (row.getLong(1) > 0) return None |
65 |
| - val numRecords = if (row.isNullAt(0)) 0 else row.getLong(0) |
66 |
| - Some(numRecords) |
| 186 | + // Validate all the files has stats |
| 187 | + val filesStatsCount = deltaScanGenerator.filesWithStatsForScan(Nil).select( |
| 188 | + count(when(col("stats.numRecords").isNull, 1)).as("missingNumRecords"), |
| 189 | + count(when(col("stats.numRecords") > 0, 1)).as("countNonEmptyFiles")).head |
| 190 | + |
| 191 | + val allRecordsHasStats = filesStatsCount.getAs[Long]("missingNumRecords") == 0 |
| 192 | + // DELETE operations creates AddFile records with 0 rows, and no column stats. |
| 193 | + // We can safely ignore it since there is no data. |
| 194 | + lazy val files = deltaScanGenerator.filesWithStatsForScan(Nil) |
| 195 | + .filter(col("stats.numRecords") > 0) |
| 196 | + val numFiles: Long = filesStatsCount.getAs[Long]("countNonEmptyFiles") |
| 197 | + lazy val statsMinMaxNullColumns = files.select(col("stats.*")) |
| 198 | + if (dataColumns.isEmpty |
| 199 | + || !allRecordsHasStats |
| 200 | + || numFiles == 0 |
| 201 | + || !statsMinMaxNullColumns.columns.contains("minValues") |
| 202 | + || !statsMinMaxNullColumns.columns.contains("maxValues") |
| 203 | + || !statsMinMaxNullColumns.columns.contains("nullCount")) { |
| 204 | + Map.empty |
| 205 | + } else { |
| 206 | + // dataColumns can contain columns without stats if dataSkippingNumIndexedCols |
| 207 | + // has been increased |
| 208 | + val columnsWithStats = files.select( |
| 209 | + col("stats.minValues.*"), |
| 210 | + col("stats.maxValues.*"), |
| 211 | + col("stats.nullCount.*")) |
| 212 | + .columns.groupBy(identity).mapValues(_.size) |
| 213 | + .filter(x => x._2 == 3) // 3: minValues, maxValues, nullCount |
| 214 | + .map(x => x._1).toSet |
| 215 | + |
| 216 | + // Creates a tuple with physical name to avoid recalculating it multiple times |
| 217 | + val dataColumnsWithStats = dataColumns.map(x => (x, DeltaColumnMapping.getPhysicalName(x))) |
| 218 | + .filter(x => columnsWithStats.contains(x._2)) |
| 219 | + |
| 220 | + val columnsToQuery = dataColumnsWithStats.flatMap { columnAndPhysicalName => |
| 221 | + val dataType = columnAndPhysicalName._1.dataType |
| 222 | + val physicalName = columnAndPhysicalName._2 |
| 223 | + |
| 224 | + Seq(col(s"stats.minValues.`$physicalName`").cast(dataType).as(s"min.$physicalName"), |
| 225 | + col(s"stats.maxValues.`$physicalName`").cast(dataType).as(s"max.$physicalName"), |
| 226 | + col(s"stats.nullCount.`$physicalName`").as(s"nullCount.$physicalName")) |
| 227 | + } ++ Seq(col(s"stats.numRecords").as(s"numRecords")) |
| 228 | + |
| 229 | + val minMaxNullCountExpr = dataColumnsWithStats.flatMap { columnAndPhysicalName => |
| 230 | + val physicalName = columnAndPhysicalName._2 |
| 231 | + |
| 232 | + // To validate if the column has stats we do two validation: |
| 233 | + // 1-) COUNT(nullCount.columnName) should be equals to numFiles, |
| 234 | + // since nullCount is always non-null. |
| 235 | + // 2-) The number of files with non-null min/max: |
| 236 | + // a. count(min.columnName)|count(max.columnName) + |
| 237 | + // the number of files where all rows are NULL: |
| 238 | + // b. count of (ISNULL(min.columnName) and nullCount.columnName == numRecords) |
| 239 | + // should be equals to numFiles |
| 240 | + Seq( |
| 241 | + s"""case when $numFiles = count(`nullCount.$physicalName`) |
| 242 | + | AND $numFiles = (count(`min.$physicalName`) + sum(case when |
| 243 | + | ISNULL(`min.$physicalName`) and `nullCount.$physicalName` = numRecords |
| 244 | + | then 1 else 0 end)) |
| 245 | + | AND $numFiles = (count(`max.$physicalName`) + sum(case when |
| 246 | + | ISNULL(`max.$physicalName`) AND `nullCount.$physicalName` = numRecords |
| 247 | + | then 1 else 0 end)) |
| 248 | + | then TRUE else FALSE end as `complete_$physicalName`""".stripMargin, |
| 249 | + s"min(`min.$physicalName`) as `min_$physicalName`", |
| 250 | + s"max(`max.$physicalName`) as `max_$physicalName`", |
| 251 | + s"sum(`nullCount.$physicalName`) as `nullCount_$physicalName`") |
| 252 | + } |
| 253 | + |
| 254 | + val statsResults = files.select(columnsToQuery: _*).selectExpr(minMaxNullCountExpr: _*).head |
| 255 | + |
| 256 | + dataColumnsWithStats |
| 257 | + .filter(x => statsResults.getAs[Boolean](s"complete_${x._2}")) |
| 258 | + .map { columnAndPhysicalName => |
| 259 | + val column = columnAndPhysicalName._1 |
| 260 | + val physicalName = columnAndPhysicalName._2 |
| 261 | + column.name -> |
| 262 | + DeltaColumnStat( |
| 263 | + statsResults.getAs(s"min_$physicalName"), |
| 264 | + statsResults.getAs(s"max_$physicalName"), |
| 265 | + Some(statsResults.getAs[Long](s"min_$physicalName")), |
| 266 | + None) |
| 267 | + }.toMap |
| 268 | + } |
| 269 | + } |
| 270 | + |
| 271 | + def extractGlobalPartitionedColumnStatsDeltaLog(snapshot: Snapshot): |
| 272 | + Map[String, DeltaColumnStat] = { |
| 273 | + |
| 274 | + val partitionedColumns = snapshot.metadata.partitionSchema |
| 275 | + .filter(x => columnStatsSupportedDataTypes.contains(x.dataType)) |
| 276 | + .map(x => (x, DeltaColumnMapping.getPhysicalName(x))) |
| 277 | + |
| 278 | + if (partitionedColumns.isEmpty) { |
| 279 | + Map.empty |
| 280 | + } else { |
| 281 | + val partitionedColumnsValues = partitionedColumns.map { partitionedColumn => |
| 282 | + val physicalName = partitionedColumn._2 |
| 283 | + col(s"partitionValues.`$physicalName`") |
| 284 | + .cast(partitionedColumn._1.dataType).as(physicalName) |
| 285 | + } |
| 286 | + |
| 287 | + val partitionedColumnsAgg = partitionedColumns.flatMap { partitionedColumn => |
| 288 | + val physicalName = partitionedColumn._2 |
| 289 | + |
| 290 | + Seq(min(s"`$physicalName`").as(s"min_$physicalName"), |
| 291 | + max(s"`$physicalName`").as(s"max_$physicalName"), |
| 292 | + count_distinct(col(s"`$physicalName`")).as(s"nullCount_$physicalName")) |
| 293 | + } |
| 294 | + |
| 295 | + val partitionedColumnsQuery = snapshot.allFiles |
| 296 | + .select(partitionedColumnsValues: _*) |
| 297 | + .agg(partitionedColumnsAgg.head, partitionedColumnsAgg.tail: _*) |
| 298 | + .head() |
| 299 | + |
| 300 | + partitionedColumns.map { partitionedColumn => |
| 301 | + val physicalName = partitionedColumn._2 |
| 302 | + |
| 303 | + partitionedColumn._1.name -> |
| 304 | + DeltaColumnStat( |
| 305 | + partitionedColumnsQuery.getAs(s"min_$physicalName"), |
| 306 | + partitionedColumnsQuery.getAs(s"max_$physicalName"), |
| 307 | + None, |
| 308 | + Some(partitionedColumnsQuery.getAs[Long](s"nullCount_$physicalName"))) |
| 309 | + }.toMap |
| 310 | + } |
67 | 311 | }
|
| 312 | + |
| 313 | + CaseInsensitiveMap( |
| 314 | + extractGlobalColumnStatsDeltaLog(snapshot).++ |
| 315 | + (extractGlobalPartitionedColumnStatsDeltaLog(snapshot))) |
68 | 316 | }
|
69 | 317 | }
|
0 commit comments