This repository was archived by the owner on Sep 14, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathwrap.c
256 lines (213 loc) · 4.82 KB
/
wrap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Copyright 2015 The golinear Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file.
#include <stdlib.h>
#include <string.h>
#include <linear.h>
#include "wrap.h"
#ifdef CV_OMP
#include <omp.h>
#endif
feature_node_t *nodes_new(size_t n)
{
feature_node_t *nodes = malloc((n + 1) * sizeof(feature_node_t));
if (nodes == NULL) {
return NULL;
}
// Terminator
nodes[n].index = -1;
nodes[n].value = 0.0;
return nodes;
}
void nodes_free(feature_node_t *nodes)
{
free(nodes);
}
void nodes_put(feature_node_t *nodes, size_t nodes_idx, int idx,
double value)
{
nodes[nodes_idx].index = idx;
nodes[nodes_idx].value = value;
}
feature_node_t nodes_get(feature_node_t *nodes, size_t idx)
{
return nodes[idx];
}
feature_node_t *nodes_vector_get(problem_t *problem, size_t idx)
{
return problem->x[idx];
}
problem_t *problem_new()
{
problem_t *problem = malloc(sizeof(problem_t));
if (problem == NULL) {
return NULL;
}
problem->l = 0;
problem->n = 0;
problem->bias = -1;
problem->y = malloc(0);
if (problem->y == NULL) {
free(problem);
return NULL;
}
problem->x = malloc(0);
if (problem->x == NULL) {
free(problem->y);
free(problem);
return NULL;
}
return problem;
}
void problem_free(problem_t *problem)
{
free(problem->x);
free(problem->y);
free(problem);
}
void problem_add_train_inst(problem_t *problem, feature_node_t *nodes,
double label)
{
++problem->l;
// The number of features equals the highest feature index.
feature_node_t *node;
for (node = nodes; node->index != -1; ++node)
if (node->index > problem->n)
problem->n = node->index;
problem->y = realloc(problem->y, (size_t) problem->l * sizeof(double));
problem->y[problem->l - 1] = label;
problem->x = realloc(problem->x, (size_t) problem->l * sizeof(feature_node_t *));
problem->x[problem->l - 1] = nodes;
}
double problem_bias(problem_t *problem)
{
return problem->bias;
}
void set_problem_bias(problem_t *problem, double bias)
{
problem->bias = bias;
}
parameter_t *parameter_new()
{
parameter_t *param = malloc(sizeof(parameter_t));
if (param == NULL) {
return NULL;
}
memset(param, 0, sizeof(parameter_t));
return param;
}
void parameter_set_nthreads(parameter_t *param, int nthreads)
{
#ifdef CV_OMP
if (nthreads <= 0)
param->nr_thread = omp_get_max_threads();
else
param->nr_thread = nthreads;
#endif
}
void parameter_free(parameter_t *param)
{
if (param->weight_label != NULL) {
free(param->weight_label);
param->weight_label = NULL;
}
if (param->weight != NULL) {
free(param->weight);
param->weight = NULL;
}
}
double *double_new(size_t n)
{
double *r = malloc(n * sizeof(double));
if (r == NULL) {
return NULL;
}
memset(r, 0, n * sizeof(double));
return r;
}
int *labels_new(int n)
{
int *labels = malloc((size_t) n * sizeof(int));
if (labels == NULL) {
return NULL;
}
memset(labels, 0, (size_t) n * sizeof(int));
return labels;
}
double *probs_new(model_t *model)
{
int nClasses = get_nr_class(model);
double *probs = malloc((size_t) nClasses * sizeof(double));
if (probs == NULL) {
return NULL;
}
memset(probs, 0, (size_t) nClasses * sizeof(double));
return probs;
}
double get_double_idx(double *arr, int idx)
{
return arr[idx];
}
int get_int_idx(int *arr, int idx)
{
return arr[idx];
}
void set_double_idx(double *arr, int idx, double val)
{
arr[idx] = val;
}
void set_int_idx(int *arr, int idx, int val)
{
arr[idx] = val;
}
char const *check_parameter_wrap(problem_t *prob, parameter_t *param)
{
return check_parameter(prob, param);
}
void cross_validation_wrap(problem_t const *prob, parameter_t const *param,
int nr_fold, double *target)
{
return cross_validation(prob, param, nr_fold, target);
}
void destroy_param_wrap(parameter_t* param)
{
return destroy_param(param);
}
void free_and_destroy_model_wrap(model_t *model)
{
free_and_destroy_model(&model);
}
void get_labels_wrap(model_t const *model, int *label)
{
get_labels(model, label);
}
int get_nr_class_wrap(model_t const *model)
{
return get_nr_class(model);
}
model_t *load_model_wrap(char const *filename)
{
return load_model(filename);
}
double predict_probability_wrap(model_t const *model,
feature_node_t const *x, double *prob_estimates)
{
return predict_probability(model, x, prob_estimates);
}
double predict_values_wrap(model_t const *model,
feature_node_t const *x, double *dec_values)
{
return predict_values(model, x, dec_values);
}
int save_model_wrap(model_t const *model, char const *filename)
{
return save_model(filename, model);
}
model_t *train_wrap(problem_t *prob, parameter_t *param)
{
return train(prob, param);
}
double predict_wrap(model_t const *model, feature_node_t *nodes)
{
return predict(model, nodes);
}