-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcustom_log.py
executable file
·202 lines (165 loc) · 6.25 KB
/
custom_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from typing import Union, Dict
import torch
import time
import logging
from datetime import datetime
import os
import pathlib
from omegaconf import OmegaConf
import wandb
from dotenv import load_dotenv
from config import MyConfig, DataChunk
from utils import exists, default, get_machine_name
def get_py_logger(dataset_name: str, job_id: str = None):
def _get_logger(logger_name, log_path, level=logging.INFO):
logger = logging.getLogger(logger_name) # global variance?
formatter = logging.Formatter("%(asctime)s : %(message)s")
fileHandler = logging.FileHandler(log_path, mode="w")
fileHandler.setFormatter(formatter) # `formatter` must be a logging.Formatter
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
logger.setLevel(level)
logger.addHandler(fileHandler)
logger.addHandler(streamHandler)
return logger
logger_path = "logs/{dataset_name}"
logger_name_format = "%Y-%m-%d--%H-%M-%S.%f"
logger_name = f"{job_id} - {datetime.now().strftime(logger_name_format)}.log"
logger_folder = logger_path.format(dataset_name=dataset_name)
pathlib.Path(logger_folder).mkdir(parents=True, exist_ok=True)
logger_path = os.path.join(logger_folder, logger_name)
logger = _get_logger(logger_name, logger_path)
return logger # , logger_name, logger_path
def init_wandb(args: MyConfig, job_id, project_name, log_freq: int, model=None):
# wandb.run.dir
# https://docs.wandb.ai/guides/track/advanced/save-restore
try:
load_dotenv()
os.environ["WANDB__SERVICE_WAIT"] = "300"
wandb.login(key=os.getenv("WANDB_API_KEY"))
except Exception as e:
print(f"--- was trying to log in Weights and Biases... e={e}")
## run_name for wandb's run
machine_name = get_machine_name()
cuda = args.hardware.device.replace(":", "") ## get cuda info instead
if cuda == "cuda":
try:
cuda = torch.cuda.get_device_name(0)
except Exception as e:
print("error when trying to get_device_name", e)
pass
watermark = "{}_{}_{}_{}_{}".format(
args.dataset.name, machine_name, cuda, job_id, time.strftime("%I-%M%p-%B-%d-%Y")
)
wandb.init(
project=project_name,
entity="adaptive_interface",
name=watermark,
settings=wandb.Settings(start_method="fork"),
)
# if exists(model):
## TODO: fix later
# wandb.watch(model, log_freq=log_freq, log_graph=True, log="all") # log="all" to log gradients and parameters
return watermark
class MyLogging:
def __init__(self, args: MyConfig, model, job_id, project_name):
self.args = args
log_freq = self.args.logging.wandb.log_freq
dataset = args.dataset.name
self.use_py_logger = args.logging.use_py_log
self.use_wandb = args.logging.wandb.use_wandb
self.py_logger = get_py_logger(dataset, job_id) if self.use_py_logger else None
if self.use_wandb:
init_wandb(
args,
project_name=project_name,
model=model,
job_id=job_id,
log_freq=log_freq,
)
def info(
self,
msg: Union[Dict, str],
use_wandb=None,
sep=", ",
padding_space=False,
pref_msg: str = "",
):
use_wandb = default(use_wandb, self.use_wandb)
if isinstance(msg, Dict):
msg_str = (
pref_msg
+ " "
+ sep.join(
f"{k} {round(v, 4) if isinstance(v, int) else v}"
for k, v in msg.items()
)
)
if padding_space:
msg_str = sep + msg_str + " " + sep
if use_wandb:
wandb.log(msg)
if self.use_py_logger:
self.py_logger.info(msg_str)
else:
print(msg_str)
else:
if self.use_py_logger:
self.py_logger.info(msg)
else:
print(msg)
def log_imgs(self, x, y, y_hat, classes, max_scores, name: str):
columns = ["image", "pred", "label", "score", "correct"]
data = []
for j, image in enumerate(x, 0):
# pil_image = Image.fromarray(image, mode="RGB")
data.append(
[
wandb.Image(image[:3]),
classes[y_hat[j].item()],
classes[y[j].item()],
max_scores[j].item(),
y_hat[j].item() == y[j].item(),
]
)
table = wandb.Table(data=data, columns=columns)
wandb.log({name: table})
def log_config(self, config: MyConfig):
wandb.config.update(OmegaConf.to_container(config)) # , allow_val_change=True)
def update_best_result(self, msg: str, metric, val, use_wandb=None):
use_wandb = default(use_wandb, self.use_wandb)
if self.use_py_logger:
self.py_logger.info(msg)
else:
print(msg)
if use_wandb:
wandb.run.summary[metric] = val
def finish(
self,
use_wandb=None,
msg_str: str = None,
model=None,
model_best_name: str = "",
dummy_batch_x=None,
):
use_wandb = default(use_wandb, self.use_wandb)
if exists(msg_str):
if self.use_py_logger:
self.py_logger.info(msg_str)
else:
print(msg_str)
if use_wandb:
if model_best_name:
wandb.save(model_best_name)
print(f"saved pytorch model {model_best_name}!")
if exists(model):
try:
# https://colab.research.google.com/github/wandb/examples/blob/master/colabs/pytorch/Simple_PyTorch_Integration.ipynb#scrollTo=j64Lu7pZcubd
if self.args.hardware.multi_gpus == "DataParallel":
model = model.module
torch.onnx.export(model, dummy_batch_x, "model.onnx")
wandb.save("model.onnx")
print("saved to model.onnx!")
except Exception as e:
print(e)
wandb.finish()