-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathetl.py
148 lines (113 loc) · 5.74 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col, to_timestamp, monotonically_increasing_id
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID']=config['KEYS']['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY']=config['KEYS']['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
"""
Description: This function loads song_data from S3 and processes it by extracting the songs and artist tables
and then again loaded back to S3
Parameters:
spark : Spark Session
input_data : location of song_data json files with the songs metadata
output_data : S3 bucket were dimensional tables in parquet format will be stored
"""
# get filepath to song data file
song_data = os.path.join(input_data, "song-data/A/A/A/*.json")
# read song data file
df = spark.read.json(song_data)
# extract columns to create songs table
songs_table = df['song_id', 'title', 'artist_id', 'year', 'duration']
songs_table = songs_table.dropDuplicates(['song_id'])
# write songs table to parquet files partitioned by year and artist
songs_table.write.partitionBy('year', 'artist_id').parquet(os.path.join(output_data, 'songs.parquet'), 'overwrite')
# extract columns to create artists table
artists_table = df['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']
artists_table = artists_table.dropDuplicates(['artist_id'])
# write artists table to parquet files
artists_table.write.parquet(os.path.join(output_data, 'artists.parquet'), 'overwrite')
def process_log_data(spark, input_data, output_data):
"""
Description: This function loads log_data from S3 and processes it by extracting the songs and artist tables
and then again loaded back to S3. Also output from previous function is used in by spark.read.json command
Parameters:
spark : Spark Session
input_data : location of log_data json files with the events data
output_data : S3 bucket were dimensional tables in parquet format will be stored
"""
# get filepath to log data file
log_data = os.path.join(input_data,"log_data/*/*/*.json")
# read log data file
df = spark.read.json(log_data)
# filter by actions for song plays
songplays_table = df['ts', 'userId', 'level','sessionId', 'location', 'userAgent']
# extract columns for users table
users_table = df['userId', 'firstName', 'lastName', 'gender', 'level']
users_table = users_table.dropDuplicates(['userId'])
# write users table to parquet files
users_table.write.parquet(os.path.join(output_data, 'users.parquet'), 'overwrite')
print("users.parquet completed")
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: str(int(int(x)/1000)))
df = df.withColumn('timestamp', get_timestamp(df.ts))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: str(datetime.fromtimestamp(int(x) / 1000.0)))
df = df.withColumn("datetime", get_datetime(df.ts))
# extract columns to create time table
time_table = df.select(
col('datetime').alias('start_time'),
hour('datetime').alias('hour'),
dayofmonth('datetime').alias('day'),
weekofyear('datetime').alias('week'),
month('datetime').alias('month'),
year('datetime').alias('year')
)
time_table = time_table.dropDuplicates(['start_time'])
# write time table to parquet files partitioned by year and month
time_table.write.partitionBy('year', 'month').parquet(os.path.join(output_data, 'time.parquet'), 'overwrite')
print("time.parquet completed")
# read in song data to use for songplays table
song_data = os.path.join(input_data, "song-data/A/A/A/*.json")
song_df = spark.read.json(song_data)
# extract columns from joined song and log datasets to create songplays table
df = df.join(song_df, song_df.title == df.song)
songplays_table = df.select(
col('ts').alias('ts'),
col('userId').alias('user_id'),
col('level').alias('level'),
col('song_id').alias('song_id'),
col('artist_id').alias('artist_id'),
col('ssessionId').alias('session_id'),
col('location').alias('location'),
col('userAgent').alias('user_agent'),
col('year').alias('year'),
month('datetime').alias('month')
)
songplays_table = songplays_table.selectExpr("ts as start_time")
songplays_table.select(monotonically_increasing_id().alias('songplay_id')).collect()
# write songplays table to parquet files partitioned by year and month
songplays_table.write.partitionBy('year', 'month').parquet(os.path.join(output_data, 'songplays.parquet'), 'overwrite')
print("songplays.parquet completed")
print("process_log_data completed")
def main():
"""
Extract songs and events data from S3, Transform it into dimensional tables format, and Load it back to S3 in Parquet format
"""
spark = create_spark_session()
input_data = "s3a://udacity-dend/"
output_data = "s3a://mengheng-s3/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
if __name__ == "__main__":
main()