|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "deletable": false, |
| 7 | + "editable": false, |
| 8 | + "id": "j4EFYnn4MixR", |
| 9 | + "nbgrader": { |
| 10 | + "cell_type": "markdown", |
| 11 | + "checksum": "2dee446e1f8055f6ba536709ccbcb62c", |
| 12 | + "grade": false, |
| 13 | + "grade_id": "cell-2e05cbe003d95447", |
| 14 | + "locked": true, |
| 15 | + "schema_version": 3, |
| 16 | + "solution": false, |
| 17 | + "task": false |
| 18 | + } |
| 19 | + }, |
| 20 | + "source": [ |
| 21 | + "## Sprint Challenge: Data Wrangling and Storytelling\n", |
| 22 | + "### Notebook points total: 14\n" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "metadata": { |
| 28 | + "deletable": false, |
| 29 | + "editable": false, |
| 30 | + "nbgrader": { |
| 31 | + "cell_type": "markdown", |
| 32 | + "checksum": "09ff81547a7ea5678875118ce6caa95d", |
| 33 | + "grade": false, |
| 34 | + "grade_id": "cell-5821095ecfb57ce4", |
| 35 | + "locked": true, |
| 36 | + "schema_version": 3, |
| 37 | + "solution": false, |
| 38 | + "task": false |
| 39 | + } |
| 40 | + }, |
| 41 | + "source": [ |
| 42 | + "## Python Fundamentals" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "markdown", |
| 47 | + "metadata": { |
| 48 | + "deletable": false, |
| 49 | + "editable": false, |
| 50 | + "nbgrader": { |
| 51 | + "cell_type": "markdown", |
| 52 | + "checksum": "dc8877d44d9b265b9d66a579582b88cd", |
| 53 | + "grade": false, |
| 54 | + "grade_id": "cell-b5f9b60ba324a5b0", |
| 55 | + "locked": true, |
| 56 | + "schema_version": 3, |
| 57 | + "solution": false, |
| 58 | + "task": false |
| 59 | + } |
| 60 | + }, |
| 61 | + "source": [ |
| 62 | + "**Task 1** - Python Objects\n", |
| 63 | + "* Create a list object called `list_practice` using the following three strings: `bloom`, `data`, `python` " |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": { |
| 70 | + "deletable": false, |
| 71 | + "nbgrader": { |
| 72 | + "cell_type": "code", |
| 73 | + "checksum": "2c2a3c1d8e5f4ea0a783bfa9d00218e7", |
| 74 | + "grade": false, |
| 75 | + "grade_id": "cell-6ee0685279505899", |
| 76 | + "locked": false, |
| 77 | + "schema_version": 3, |
| 78 | + "solution": true, |
| 79 | + "task": false |
| 80 | + } |
| 81 | + }, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "# YOUR CODE HERE\n", |
| 85 | + "raise NotImplementedError()" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "metadata": { |
| 91 | + "deletable": false, |
| 92 | + "editable": false, |
| 93 | + "nbgrader": { |
| 94 | + "cell_type": "markdown", |
| 95 | + "checksum": "6e15fd8ad40d40895af5017592188d86", |
| 96 | + "grade": false, |
| 97 | + "grade_id": "cell-254c30333f63dc0e", |
| 98 | + "locked": true, |
| 99 | + "schema_version": 3, |
| 100 | + "solution": false, |
| 101 | + "task": false |
| 102 | + } |
| 103 | + }, |
| 104 | + "source": [ |
| 105 | + "**Task 1 Test**" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "metadata": { |
| 112 | + "deletable": false, |
| 113 | + "editable": false, |
| 114 | + "nbgrader": { |
| 115 | + "cell_type": "code", |
| 116 | + "checksum": "248c1e6a40bea014a9f130cee72c1a46", |
| 117 | + "grade": true, |
| 118 | + "grade_id": "cell-7f5ed8ccc5b15f71", |
| 119 | + "locked": true, |
| 120 | + "points": 1, |
| 121 | + "schema_version": 3, |
| 122 | + "solution": false, |
| 123 | + "task": false |
| 124 | + } |
| 125 | + }, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "#Task 1 - Test\n", |
| 129 | + "assert isinstance(list_practice, list), \"Make sure you created a list object\"\n" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "metadata": { |
| 135 | + "deletable": false, |
| 136 | + "editable": false, |
| 137 | + "nbgrader": { |
| 138 | + "cell_type": "markdown", |
| 139 | + "checksum": "30d91f27e533bf95f3afd44e8d9cda1b", |
| 140 | + "grade": false, |
| 141 | + "grade_id": "cell-bd07e140b06f24b6", |
| 142 | + "locked": true, |
| 143 | + "schema_version": 3, |
| 144 | + "solution": false, |
| 145 | + "task": false |
| 146 | + } |
| 147 | + }, |
| 148 | + "source": [ |
| 149 | + "\n", |
| 150 | + "**Task 2** - Dictionaries\n", |
| 151 | + "* Create a dictionary object called `diction_practice`. \n", |
| 152 | + "* Assign the following values to their respective keys listed above: `tech`, `science`, `language`\n", |
| 153 | + "\n", |
| 154 | + "*Hint:* There are multiple ways you can accomplish this task. You can either write out the key:values pairs manually, or iteratively combine two lists using the [`zip` function](https://docs.python.org/3/library/functions.html)." |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": null, |
| 160 | + "metadata": { |
| 161 | + "deletable": false, |
| 162 | + "nbgrader": { |
| 163 | + "cell_type": "code", |
| 164 | + "checksum": "f9948f7da71e452ccc2cb3fd5550ac09", |
| 165 | + "grade": false, |
| 166 | + "grade_id": "cell-d2aac83e74b8fb89", |
| 167 | + "locked": false, |
| 168 | + "schema_version": 3, |
| 169 | + "solution": true, |
| 170 | + "task": false |
| 171 | + } |
| 172 | + }, |
| 173 | + "outputs": [], |
| 174 | + "source": [ |
| 175 | + "# YOUR CODE HERE\n", |
| 176 | + "raise NotImplementedError()" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "markdown", |
| 181 | + "metadata": { |
| 182 | + "deletable": false, |
| 183 | + "editable": false, |
| 184 | + "nbgrader": { |
| 185 | + "cell_type": "markdown", |
| 186 | + "checksum": "89adce679550e000e75a3cd0351721b1", |
| 187 | + "grade": false, |
| 188 | + "grade_id": "cell-95f85a283f98ef20", |
| 189 | + "locked": true, |
| 190 | + "schema_version": 3, |
| 191 | + "solution": false, |
| 192 | + "task": false |
| 193 | + } |
| 194 | + }, |
| 195 | + "source": [ |
| 196 | + "**Task 2 - Test**" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": null, |
| 202 | + "metadata": { |
| 203 | + "deletable": false, |
| 204 | + "editable": false, |
| 205 | + "nbgrader": { |
| 206 | + "cell_type": "code", |
| 207 | + "checksum": "eb3d302695cce47d57ee41774cb9aa05", |
| 208 | + "grade": true, |
| 209 | + "grade_id": "cell-6f3011fa357d270f", |
| 210 | + "locked": true, |
| 211 | + "points": 1, |
| 212 | + "schema_version": 3, |
| 213 | + "solution": false, |
| 214 | + "task": false |
| 215 | + } |
| 216 | + }, |
| 217 | + "outputs": [], |
| 218 | + "source": [ |
| 219 | + "#Task 2 - Test\n", |
| 220 | + "\n", |
| 221 | + "assert isinstance(diction_practice, dict), \"Did you use the correct syntax?\"\n" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "markdown", |
| 226 | + "metadata": { |
| 227 | + "deletable": false, |
| 228 | + "editable": false, |
| 229 | + "nbgrader": { |
| 230 | + "cell_type": "markdown", |
| 231 | + "checksum": "500b06dc305643e357cca230f16dce04", |
| 232 | + "grade": false, |
| 233 | + "grade_id": "cell-4a31ee084e18453a", |
| 234 | + "locked": true, |
| 235 | + "schema_version": 3, |
| 236 | + "solution": false, |
| 237 | + "task": false |
| 238 | + } |
| 239 | + }, |
| 240 | + "source": [ |
| 241 | + "\n", |
| 242 | + "**Task 3** - Dictionaries\n", |
| 243 | + "* Reassign the value of the `python` key in your dictionary to `'programming_language'`" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": null, |
| 249 | + "metadata": { |
| 250 | + "deletable": false, |
| 251 | + "nbgrader": { |
| 252 | + "cell_type": "code", |
| 253 | + "checksum": "968e8893d06b1276dac72f7a0db78d95", |
| 254 | + "grade": false, |
| 255 | + "grade_id": "cell-59c6653a1a1faae6", |
| 256 | + "locked": false, |
| 257 | + "schema_version": 3, |
| 258 | + "solution": true, |
| 259 | + "task": false |
| 260 | + } |
| 261 | + }, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "# YOUR CODE HERE\n", |
| 265 | + "raise NotImplementedError()" |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "cell_type": "markdown", |
| 270 | + "metadata": { |
| 271 | + "deletable": false, |
| 272 | + "editable": false, |
| 273 | + "nbgrader": { |
| 274 | + "cell_type": "markdown", |
| 275 | + "checksum": "b3c824a5462497e6fc4d903f762303c9", |
| 276 | + "grade": false, |
| 277 | + "grade_id": "cell-b0a297189d9a7dd3", |
| 278 | + "locked": true, |
| 279 | + "schema_version": 3, |
| 280 | + "solution": false, |
| 281 | + "task": false |
| 282 | + } |
| 283 | + }, |
| 284 | + "source": [ |
| 285 | + "**Task 3 Tests**" |
| 286 | + ] |
| 287 | + }, |
| 288 | + { |
| 289 | + "cell_type": "code", |
| 290 | + "execution_count": null, |
| 291 | + "metadata": { |
| 292 | + "deletable": false, |
| 293 | + "editable": false, |
| 294 | + "nbgrader": { |
| 295 | + "cell_type": "code", |
| 296 | + "checksum": "8fc04dbb280a746dbac3ef75ee9de31b", |
| 297 | + "grade": true, |
| 298 | + "grade_id": "cell-94bd4331d6cb29c9", |
| 299 | + "locked": true, |
| 300 | + "points": 1, |
| 301 | + "schema_version": 3, |
| 302 | + "solution": false, |
| 303 | + "task": false |
| 304 | + } |
| 305 | + }, |
| 306 | + "outputs": [], |
| 307 | + "source": [ |
| 308 | + "#Task 3 Tests\n", |
| 309 | + "\n", |
| 310 | + "assert diction_practice['data'] == 'science', \"Make sure your values are assigned to their correct keys\"\n" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "markdown", |
| 315 | + "metadata": { |
| 316 | + "deletable": false, |
| 317 | + "editable": false, |
| 318 | + "id": "qSvL3CeTFk9F", |
| 319 | + "nbgrader": { |
| 320 | + "cell_type": "markdown", |
| 321 | + "checksum": "71b4d138b7b263261d663d1b41d6add4", |
| 322 | + "grade": false, |
| 323 | + "grade_id": "cell-40090434cb0736b0", |
| 324 | + "locked": true, |
| 325 | + "schema_version": 3, |
| 326 | + "solution": false, |
| 327 | + "task": false |
| 328 | + } |
| 329 | + }, |
| 330 | + "source": [ |
| 331 | + "## Use the following information to complete Tasks \n", |
| 332 | + "\n", |
| 333 | + "\n", |
| 334 | + "\n", |
| 335 | + "In this Sprint Challenge you will first \"wrangle\" some data from [Gapminder](https://www.gapminder.org/about-gapminder/), a Swedish non-profit co-founded by Hans Rosling. \"Gapminder produces free teaching resources making the world understandable based on reliable statistics.\"\n", |
| 336 | + "- [Cell phones (total), by country and year](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/countries-etc-datapoints/ddf--datapoints--cell_phones_total--by--geo--time.csv)\n", |
| 337 | + "- [Population (total), by country and year](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/countries-etc-datapoints/ddf--datapoints--population_total--by--geo--time.csv)\n", |
| 338 | + "- [Geo country codes](https://github.com/open-numbers/ddf--gapminder--systema_globalis/blob/master/ddf--entities--geo--country.csv)\n", |
| 339 | + "\n", |
| 340 | + "These two links have everything you need to successfully complete the first part of this sprint challenge.\n", |
| 341 | + "- [Pandas documentation: Working with Text Data](https://pandas.pydata.org/pandas-docs/stable/text.html) (one question)\n", |
| 342 | + "- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf) (everything else)\n" |
| 343 | + ] |
| 344 | + }, |
| 345 | + { |
| 346 | + "cell_type": "markdown", |
| 347 | + "metadata": { |
| 348 | + "deletable": false, |
| 349 | + "editable": false, |
| 350 | + "id": "0ZklksziMixS", |
| 351 | + "nbgrader": { |
| 352 | + "cell_type": "markdown", |
| 353 | + "checksum": "235860cb511ea847389f2096adf6cc6e", |
| 354 | + "grade": false, |
| 355 | + "grade_id": "cell-ae2312e461921817", |
| 356 | + "locked": true, |
| 357 | + "schema_version": 3, |
| 358 | + "solution": false, |
| 359 | + "task": false |
| 360 | + } |
| 361 | + }, |
| 362 | + "source": [ |
| 363 | + "**Task 4** - Load and print the cell phone data. Pandas and numpy import statements have been included for you.\n", |
| 364 | + "\n", |
| 365 | + "* Load your CSV file found at `cell_phones_url` into a DataFrame object named `cell_phones`\n" |
| 366 | + ] |
| 367 | + }, |
| 368 | + { |
| 369 | + "cell_type": "code", |
| 370 | + "execution_count": null, |
| 371 | + "metadata": { |
| 372 | + "deletable": false, |
| 373 | + "id": "FFO8QNJ7MixS", |
| 374 | + "nbgrader": { |
| 375 | + "cell_type": "code", |
| 376 | + "checksum": "82e3c74df1cb9321caff9035dd2e9409", |
| 377 | + "grade": false, |
| 378 | + "grade_id": "cell-6f16afb9d271f949", |
| 379 | + "locked": false, |
| 380 | + "schema_version": 3, |
| 381 | + "solution": true, |
| 382 | + "task": false |
| 383 | + } |
| 384 | + }, |
| 385 | + "outputs": [], |
| 386 | + "source": [ |
| 387 | + "# Task 4\n", |
| 388 | + "\n", |
| 389 | + "# Imports \n", |
| 390 | + "import pandas as pd\n", |
| 391 | + "import numpy as np\n", |
| 392 | + "\n", |
| 393 | + "cell_phones_url = 'https://raw.githubusercontent.com/bloominstituteoftechnology/data-science-practice-datasets/main/unit_1/Cell__Phones/cell_phones.csv'\n", |
| 394 | + "\n", |
| 395 | + "# Load the dataframe and print the top 5 rows\n", |
| 396 | + "\n", |
| 397 | + "# YOUR CODE HERE\n", |
| 398 | + "raise NotImplementedError()\n" |
| 399 | + ] |
| 400 | + }, |
| 401 | + { |
| 402 | + "cell_type": "markdown", |
| 403 | + "metadata": { |
| 404 | + "id": "ymCLkZMJMixT" |
| 405 | + }, |
| 406 | + "source": [ |
| 407 | + "**Task 4 Test**" |
| 408 | + ] |
| 409 | + }, |
| 410 | + { |
| 411 | + "cell_type": "code", |
| 412 | + "execution_count": null, |
| 413 | + "metadata": { |
| 414 | + "deletable": false, |
| 415 | + "editable": false, |
| 416 | + "id": "btcEJXxCMixT", |
| 417 | + "nbgrader": { |
| 418 | + "cell_type": "code", |
| 419 | + "checksum": "597bda1cfbeb2d3def97e7c47f6971c7", |
| 420 | + "grade": true, |
| 421 | + "grade_id": "cell-226f7bf8e9ea24f9", |
| 422 | + "locked": true, |
| 423 | + "points": 1, |
| 424 | + "schema_version": 3, |
| 425 | + "solution": false, |
| 426 | + "task": false |
| 427 | + } |
| 428 | + }, |
| 429 | + "outputs": [], |
| 430 | + "source": [ |
| 431 | + "# Task 4 - Test\n", |
| 432 | + "\n", |
| 433 | + "assert isinstance(cell_phones, pd.DataFrame), 'Have you created a DataFrame named `cell_phones`?'\n", |
| 434 | + "assert len(cell_phones) == 9574\n" |
| 435 | + ] |
| 436 | + }, |
| 437 | + { |
| 438 | + "cell_type": "markdown", |
| 439 | + "metadata": { |
| 440 | + "deletable": false, |
| 441 | + "editable": false, |
| 442 | + "id": "9YPW16tmT2J_", |
| 443 | + "nbgrader": { |
| 444 | + "cell_type": "markdown", |
| 445 | + "checksum": "26b84eb6f8694fc80894fec62cb92e2f", |
| 446 | + "grade": false, |
| 447 | + "grade_id": "cell-905dd5d05e5cebb7", |
| 448 | + "locked": true, |
| 449 | + "schema_version": 3, |
| 450 | + "solution": false, |
| 451 | + "task": false |
| 452 | + } |
| 453 | + }, |
| 454 | + "source": [ |
| 455 | + "**Task 5** - Load and print the population data. \n", |
| 456 | + "\n", |
| 457 | + "* Load the CSV file found at `population_url` into a DataFrame named `population`\n", |
| 458 | + "\n" |
| 459 | + ] |
| 460 | + }, |
| 461 | + { |
| 462 | + "cell_type": "code", |
| 463 | + "execution_count": null, |
| 464 | + "metadata": { |
| 465 | + "deletable": false, |
| 466 | + "id": "SNWpDAvyUYa2", |
| 467 | + "nbgrader": { |
| 468 | + "cell_type": "code", |
| 469 | + "checksum": "9874647278a76399d4f5547222d9dc02", |
| 470 | + "grade": false, |
| 471 | + "grade_id": "cell-561c2d59728188a9", |
| 472 | + "locked": false, |
| 473 | + "schema_version": 3, |
| 474 | + "solution": true, |
| 475 | + "task": false |
| 476 | + } |
| 477 | + }, |
| 478 | + "outputs": [], |
| 479 | + "source": [ |
| 480 | + "# Task 5\n", |
| 481 | + "\n", |
| 482 | + "population_url = 'https://raw.githubusercontent.com/bloominstituteoftechnology/data-science-practice-datasets/main/unit_1/Population/population.csv'\n", |
| 483 | + "\n", |
| 484 | + "# Load the dataframe and print the first 5 records\n", |
| 485 | + "\n", |
| 486 | + "# YOUR CODE HERE\n", |
| 487 | + "raise NotImplementedError()" |
| 488 | + ] |
| 489 | + }, |
| 490 | + { |
| 491 | + "cell_type": "markdown", |
| 492 | + "metadata": { |
| 493 | + "id": "RDOcC0FdVjIz" |
| 494 | + }, |
| 495 | + "source": [ |
| 496 | + "**Task 5 Test**" |
| 497 | + ] |
| 498 | + }, |
| 499 | + { |
| 500 | + "cell_type": "code", |
| 501 | + "execution_count": null, |
| 502 | + "metadata": { |
| 503 | + "deletable": false, |
| 504 | + "editable": false, |
| 505 | + "id": "jcaZ5W5cVjI_", |
| 506 | + "nbgrader": { |
| 507 | + "cell_type": "code", |
| 508 | + "checksum": "01d084b75b701322c49f0aecda45802a", |
| 509 | + "grade": true, |
| 510 | + "grade_id": "cell-59d01cd695becd74", |
| 511 | + "locked": true, |
| 512 | + "points": 1, |
| 513 | + "schema_version": 3, |
| 514 | + "solution": false, |
| 515 | + "task": false |
| 516 | + } |
| 517 | + }, |
| 518 | + "outputs": [], |
| 519 | + "source": [ |
| 520 | + "# Task 5 - Test\n", |
| 521 | + "\n", |
| 522 | + "assert isinstance(population, pd.DataFrame), 'Have you created a DataFrame named `population`?'\n", |
| 523 | + "assert len(population) == 59297\n" |
| 524 | + ] |
| 525 | + }, |
| 526 | + { |
| 527 | + "cell_type": "markdown", |
| 528 | + "metadata": { |
| 529 | + "id": "9acXXTiEV5uJ" |
| 530 | + }, |
| 531 | + "source": [ |
| 532 | + "**Task 6** - Load and print the geo country codes data. \n", |
| 533 | + "\n", |
| 534 | + "* Load the CSV file found at `geo_codes_url` into a DataFrame named `geo_codes`\n" |
| 535 | + ] |
| 536 | + }, |
| 537 | + { |
| 538 | + "cell_type": "code", |
| 539 | + "execution_count": null, |
| 540 | + "metadata": { |
| 541 | + "deletable": false, |
| 542 | + "id": "Obm4p8WXV5uJ", |
| 543 | + "nbgrader": { |
| 544 | + "cell_type": "code", |
| 545 | + "checksum": "8247001411ff10e160febf6472e84ce8", |
| 546 | + "grade": false, |
| 547 | + "grade_id": "cell-eb4d290384535503", |
| 548 | + "locked": false, |
| 549 | + "schema_version": 3, |
| 550 | + "solution": true, |
| 551 | + "task": false |
| 552 | + } |
| 553 | + }, |
| 554 | + "outputs": [], |
| 555 | + "source": [ |
| 556 | + "# Task 6\n", |
| 557 | + "\n", |
| 558 | + "geo_codes_url = 'https://raw.githubusercontent.com/bloominstituteoftechnology/data-science-practice-datasets/main/unit_1/GEO_codes/geo_country_codes.csv'\n", |
| 559 | + "\n", |
| 560 | + "# Load the dataframe and print out the first 5 records\n", |
| 561 | + "\n", |
| 562 | + "# YOUR CODE HERE\n", |
| 563 | + "raise NotImplementedError()" |
| 564 | + ] |
| 565 | + }, |
| 566 | + { |
| 567 | + "cell_type": "markdown", |
| 568 | + "metadata": { |
| 569 | + "deletable": false, |
| 570 | + "editable": false, |
| 571 | + "id": "_WR-4MbmV5uK", |
| 572 | + "nbgrader": { |
| 573 | + "cell_type": "markdown", |
| 574 | + "checksum": "a88bbf49e8714b89d0e0fa46c06f2217", |
| 575 | + "grade": false, |
| 576 | + "grade_id": "cell-4a0f7ebd4c9931a7", |
| 577 | + "locked": true, |
| 578 | + "schema_version": 3, |
| 579 | + "solution": false, |
| 580 | + "task": false |
| 581 | + } |
| 582 | + }, |
| 583 | + "source": [ |
| 584 | + "**Task 6 Test**" |
| 585 | + ] |
| 586 | + }, |
| 587 | + { |
| 588 | + "cell_type": "code", |
| 589 | + "execution_count": null, |
| 590 | + "metadata": { |
| 591 | + "deletable": false, |
| 592 | + "editable": false, |
| 593 | + "id": "Z3Tza5NWV5uK", |
| 594 | + "nbgrader": { |
| 595 | + "cell_type": "code", |
| 596 | + "checksum": "6bf7335d2dd565fbef6619579e0ddf59", |
| 597 | + "grade": true, |
| 598 | + "grade_id": "cell-39240405659c0c19", |
| 599 | + "locked": true, |
| 600 | + "points": 1, |
| 601 | + "schema_version": 3, |
| 602 | + "solution": false, |
| 603 | + "task": false |
| 604 | + } |
| 605 | + }, |
| 606 | + "outputs": [], |
| 607 | + "source": [ |
| 608 | + "# Task 6 - Test\n", |
| 609 | + "\n", |
| 610 | + "assert geo_codes is not None, 'Have you created a DataFrame named `geo_codes`?'\n", |
| 611 | + "assert len(geo_codes) == 273\n" |
| 612 | + ] |
| 613 | + }, |
| 614 | + { |
| 615 | + "cell_type": "markdown", |
| 616 | + "metadata": { |
| 617 | + "deletable": false, |
| 618 | + "editable": false, |
| 619 | + "id": "5DbACESjYxpV", |
| 620 | + "nbgrader": { |
| 621 | + "cell_type": "markdown", |
| 622 | + "checksum": "fbbb18f1bcf72e28cfd967ddb3d36732", |
| 623 | + "grade": false, |
| 624 | + "grade_id": "cell-817781e1dc5827c6", |
| 625 | + "locked": true, |
| 626 | + "schema_version": 3, |
| 627 | + "solution": false, |
| 628 | + "task": false |
| 629 | + } |
| 630 | + }, |
| 631 | + "source": [ |
| 632 | + "**Task 7** - Check for missing values\n", |
| 633 | + "\n", |
| 634 | + "Let's check for missing values in each of these DataFrames: `cell_phones`, `population` and `geo_codes`\n", |
| 635 | + "\n", |
| 636 | + "* Check for missing values in the following DataFrames:\n", |
| 637 | + " * Assign the total number of missing values in `cell_phones` to the variable `cell_phones_missing`\n", |
| 638 | + " * Assign the total number of missing values in `population` to the variable `population_missing`\n", |
| 639 | + " * Assign the total number of missing values in `geo_codes` to the variable `geo_codes_missing` \n", |
| 640 | + " * Hint: you will need to do a sum of a sum for this last task." |
| 641 | + ] |
| 642 | + }, |
| 643 | + { |
| 644 | + "cell_type": "code", |
| 645 | + "execution_count": null, |
| 646 | + "metadata": { |
| 647 | + "deletable": false, |
| 648 | + "id": "SwmSvUySJjXc", |
| 649 | + "nbgrader": { |
| 650 | + "cell_type": "code", |
| 651 | + "checksum": "462f481fe420ad2c37fe5a262dec6816", |
| 652 | + "grade": false, |
| 653 | + "grade_id": "cell-9426cd5765574e07", |
| 654 | + "locked": false, |
| 655 | + "schema_version": 3, |
| 656 | + "solution": true, |
| 657 | + "task": false |
| 658 | + } |
| 659 | + }, |
| 660 | + "outputs": [], |
| 661 | + "source": [ |
| 662 | + "# Task 7\n", |
| 663 | + "\n", |
| 664 | + "# Check for missing data in each of the DataFrames\n", |
| 665 | + "\n", |
| 666 | + "# YOUR CODE HERE\n", |
| 667 | + "raise NotImplementedError()" |
| 668 | + ] |
| 669 | + }, |
| 670 | + { |
| 671 | + "cell_type": "markdown", |
| 672 | + "metadata": { |
| 673 | + "deletable": false, |
| 674 | + "editable": false, |
| 675 | + "id": "cREZV7g0aLGC", |
| 676 | + "nbgrader": { |
| 677 | + "cell_type": "markdown", |
| 678 | + "checksum": "24b8d3d5ff21f6c4cfa3e634f00113aa", |
| 679 | + "grade": false, |
| 680 | + "grade_id": "cell-47ee1692d471f9ea", |
| 681 | + "locked": true, |
| 682 | + "schema_version": 3, |
| 683 | + "solution": false, |
| 684 | + "task": false |
| 685 | + } |
| 686 | + }, |
| 687 | + "source": [ |
| 688 | + "**Task 7 Test**" |
| 689 | + ] |
| 690 | + }, |
| 691 | + { |
| 692 | + "cell_type": "code", |
| 693 | + "execution_count": null, |
| 694 | + "metadata": { |
| 695 | + "deletable": false, |
| 696 | + "editable": false, |
| 697 | + "id": "eaQwM15IaLGD", |
| 698 | + "nbgrader": { |
| 699 | + "cell_type": "code", |
| 700 | + "checksum": "da0a8c532d46ac776b2609e8f439f601", |
| 701 | + "grade": true, |
| 702 | + "grade_id": "cell-cf6ab3b4b1e8afc1", |
| 703 | + "locked": true, |
| 704 | + "points": 1, |
| 705 | + "schema_version": 3, |
| 706 | + "solution": false, |
| 707 | + "task": false |
| 708 | + } |
| 709 | + }, |
| 710 | + "outputs": [], |
| 711 | + "source": [ |
| 712 | + "# Task 7 - Test\n", |
| 713 | + "\n", |
| 714 | + "if geo_codes_missing == 21: print('ERROR: Make sure to use a sum of a sum for the missing geo codes!') \n", |
| 715 | + "\n", |
| 716 | + "# Hidden tests - you will see the results when you submit to Canvas" |
| 717 | + ] |
| 718 | + }, |
| 719 | + { |
| 720 | + "cell_type": "markdown", |
| 721 | + "metadata": { |
| 722 | + "deletable": false, |
| 723 | + "editable": false, |
| 724 | + "id": "P54itLGveF5p", |
| 725 | + "nbgrader": { |
| 726 | + "cell_type": "markdown", |
| 727 | + "checksum": "c6054c87e1ff95c1767b855e2149568c", |
| 728 | + "grade": false, |
| 729 | + "grade_id": "cell-aad431149f1868a7", |
| 730 | + "locked": true, |
| 731 | + "schema_version": 3, |
| 732 | + "solution": false, |
| 733 | + "task": false |
| 734 | + } |
| 735 | + }, |
| 736 | + "source": [ |
| 737 | + "**Task 8** - Merge the `cell_phones` and `population` DataFrames.\n", |
| 738 | + "\n", |
| 739 | + "* Merge the `cell_phones` and `population` dataframes with an **inner** merge on both the `geo` and `time` columns.\n", |
| 740 | + "* Call the resulting dataframe `cell_phone_population`" |
| 741 | + ] |
| 742 | + }, |
| 743 | + { |
| 744 | + "cell_type": "code", |
| 745 | + "execution_count": null, |
| 746 | + "metadata": { |
| 747 | + "deletable": false, |
| 748 | + "id": "KL_NCL7heF51", |
| 749 | + "nbgrader": { |
| 750 | + "cell_type": "code", |
| 751 | + "checksum": "1ee15cfe45ac7986f9cb323dd1d52fbb", |
| 752 | + "grade": false, |
| 753 | + "grade_id": "cell-decaebaa844aa3a5", |
| 754 | + "locked": false, |
| 755 | + "schema_version": 3, |
| 756 | + "solution": true, |
| 757 | + "task": false |
| 758 | + } |
| 759 | + }, |
| 760 | + "outputs": [], |
| 761 | + "source": [ |
| 762 | + "# Task 8\n", |
| 763 | + "\n", |
| 764 | + "# Merge the cell_phones and population dataframes\n", |
| 765 | + "\n", |
| 766 | + "# YOUR CODE HERE\n", |
| 767 | + "raise NotImplementedError()" |
| 768 | + ] |
| 769 | + }, |
| 770 | + { |
| 771 | + "cell_type": "markdown", |
| 772 | + "metadata": { |
| 773 | + "deletable": false, |
| 774 | + "editable": false, |
| 775 | + "id": "9vFSumbkfqr_", |
| 776 | + "nbgrader": { |
| 777 | + "cell_type": "markdown", |
| 778 | + "checksum": "9daf332b99212b89d3e248fef54079ac", |
| 779 | + "grade": false, |
| 780 | + "grade_id": "cell-00202b83d4d54973", |
| 781 | + "locked": true, |
| 782 | + "schema_version": 3, |
| 783 | + "solution": false, |
| 784 | + "task": false |
| 785 | + } |
| 786 | + }, |
| 787 | + "source": [ |
| 788 | + "**Task 8 Test**" |
| 789 | + ] |
| 790 | + }, |
| 791 | + { |
| 792 | + "cell_type": "code", |
| 793 | + "execution_count": null, |
| 794 | + "metadata": { |
| 795 | + "deletable": false, |
| 796 | + "editable": false, |
| 797 | + "id": "85-p_0UGfkZJ", |
| 798 | + "nbgrader": { |
| 799 | + "cell_type": "code", |
| 800 | + "checksum": "9bd0a79e9049acd8ced9d23b68d54d9a", |
| 801 | + "grade": true, |
| 802 | + "grade_id": "cell-dd2473ea91f15f30", |
| 803 | + "locked": true, |
| 804 | + "points": 1, |
| 805 | + "schema_version": 3, |
| 806 | + "solution": false, |
| 807 | + "task": false |
| 808 | + } |
| 809 | + }, |
| 810 | + "outputs": [], |
| 811 | + "source": [ |
| 812 | + "# Task 8 - Test\n", |
| 813 | + "\n", |
| 814 | + "assert cell_phone_population is not None, 'Have you merged created a DataFrame named cell_phone_population?'\n", |
| 815 | + "assert len(cell_phone_population) == 8930\n" |
| 816 | + ] |
| 817 | + }, |
| 818 | + { |
| 819 | + "cell_type": "markdown", |
| 820 | + "metadata": { |
| 821 | + "deletable": false, |
| 822 | + "editable": false, |
| 823 | + "id": "oByYSkC7hB05", |
| 824 | + "nbgrader": { |
| 825 | + "cell_type": "markdown", |
| 826 | + "checksum": "49df153f02f79995801f03a60b34c838", |
| 827 | + "grade": false, |
| 828 | + "grade_id": "cell-01ad09608fc02d0c", |
| 829 | + "locked": true, |
| 830 | + "schema_version": 3, |
| 831 | + "solution": false, |
| 832 | + "task": false |
| 833 | + } |
| 834 | + }, |
| 835 | + "source": [ |
| 836 | + "**Task 9** - Merge the `cell_phone_population` and `geo_codes` DataFrames\n", |
| 837 | + "\n", |
| 838 | + "* Merge the `cell_phone_population` and `geo_codes` DataFrames with an inner merge using the `geo` column.\n", |
| 839 | + "* **Only merge the `country` and `geo` columns from the `geo_codes` dataframe.** \n", |
| 840 | + "* Call the resulting DataFrame `geo_cell_phone_population`\n" |
| 841 | + ] |
| 842 | + }, |
| 843 | + { |
| 844 | + "cell_type": "code", |
| 845 | + "execution_count": null, |
| 846 | + "metadata": { |
| 847 | + "deletable": false, |
| 848 | + "id": "NcO8-JpQhB1F", |
| 849 | + "nbgrader": { |
| 850 | + "cell_type": "code", |
| 851 | + "checksum": "3450df7dea31e4dee7ceb126a2d07f6a", |
| 852 | + "grade": false, |
| 853 | + "grade_id": "cell-1ce5a2360ee6fd20", |
| 854 | + "locked": false, |
| 855 | + "schema_version": 3, |
| 856 | + "solution": true, |
| 857 | + "task": false |
| 858 | + } |
| 859 | + }, |
| 860 | + "outputs": [], |
| 861 | + "source": [ |
| 862 | + "# Task 9\n", |
| 863 | + "\n", |
| 864 | + "# Merge the cell_phone_population and geo_codes dataframes\n", |
| 865 | + "# Only include the country and geo columns from geo_codes\n", |
| 866 | + "\n", |
| 867 | + "# YOUR CODE HERE\n", |
| 868 | + "raise NotImplementedError()" |
| 869 | + ] |
| 870 | + }, |
| 871 | + { |
| 872 | + "cell_type": "markdown", |
| 873 | + "metadata": { |
| 874 | + "deletable": false, |
| 875 | + "editable": false, |
| 876 | + "id": "zAKDLSV-hB1G", |
| 877 | + "nbgrader": { |
| 878 | + "cell_type": "markdown", |
| 879 | + "checksum": "a5634357f45ca81f6651395a42cc6341", |
| 880 | + "grade": false, |
| 881 | + "grade_id": "cell-935fc7dc053d368e", |
| 882 | + "locked": true, |
| 883 | + "schema_version": 3, |
| 884 | + "solution": false, |
| 885 | + "task": false |
| 886 | + } |
| 887 | + }, |
| 888 | + "source": [ |
| 889 | + "**Task 9 Test**" |
| 890 | + ] |
| 891 | + }, |
| 892 | + { |
| 893 | + "cell_type": "code", |
| 894 | + "execution_count": null, |
| 895 | + "metadata": { |
| 896 | + "deletable": false, |
| 897 | + "editable": false, |
| 898 | + "id": "eQgHSsLihB1G", |
| 899 | + "nbgrader": { |
| 900 | + "cell_type": "code", |
| 901 | + "checksum": "7005259d49844adab8beb565aaf5eed5", |
| 902 | + "grade": true, |
| 903 | + "grade_id": "cell-764d5b72ae382339", |
| 904 | + "locked": true, |
| 905 | + "points": 1, |
| 906 | + "schema_version": 3, |
| 907 | + "solution": false, |
| 908 | + "task": false |
| 909 | + } |
| 910 | + }, |
| 911 | + "outputs": [], |
| 912 | + "source": [ |
| 913 | + "# Task 9 - Test\n", |
| 914 | + "assert len(geo_cell_phone_population) == 8930\n", |
| 915 | + "assert type(geo_cell_phone_population) == pd.DataFrame\n" |
| 916 | + ] |
| 917 | + }, |
| 918 | + { |
| 919 | + "cell_type": "markdown", |
| 920 | + "metadata": { |
| 921 | + "deletable": false, |
| 922 | + "editable": false, |
| 923 | + "id": "-CZF39BWivc2", |
| 924 | + "nbgrader": { |
| 925 | + "cell_type": "markdown", |
| 926 | + "checksum": "2373ace4287e3e77f2e1c4b86d9be106", |
| 927 | + "grade": false, |
| 928 | + "grade_id": "cell-bbacb1043d1c0990", |
| 929 | + "locked": true, |
| 930 | + "schema_version": 3, |
| 931 | + "solution": false, |
| 932 | + "task": false |
| 933 | + } |
| 934 | + }, |
| 935 | + "source": [ |
| 936 | + "**Task 10** - Calculate the number of cell phones per person.\n", |
| 937 | + "\n", |
| 938 | + "* Use the `cell_phones_total` and `population_total` columns to calculate the number of cell phones per person for every year. (In other words, for every row). \n", |
| 939 | + "* Create a new column: Call this new feature (column) `phones_per_person` and add it to the `geo_cell_phone_population` DataFrame (you'll be adding the column to the DataFrame).\n", |
| 940 | + "\n", |
| 941 | + "*Hint: You can find a refresher on how to create a new column in Module 2 of this sprint.*" |
| 942 | + ] |
| 943 | + }, |
| 944 | + { |
| 945 | + "cell_type": "code", |
| 946 | + "execution_count": null, |
| 947 | + "metadata": { |
| 948 | + "deletable": false, |
| 949 | + "id": "vBeXa3LTivdC", |
| 950 | + "nbgrader": { |
| 951 | + "cell_type": "code", |
| 952 | + "checksum": "ca0c58c434dc1be273c34f79f9cdc4db", |
| 953 | + "grade": false, |
| 954 | + "grade_id": "cell-bd0bce2920604643", |
| 955 | + "locked": false, |
| 956 | + "schema_version": 3, |
| 957 | + "solution": true, |
| 958 | + "task": false |
| 959 | + } |
| 960 | + }, |
| 961 | + "outputs": [], |
| 962 | + "source": [ |
| 963 | + "# Task 10\n", |
| 964 | + "\n", |
| 965 | + "# YOUR CODE HERE\n", |
| 966 | + "raise NotImplementedError()" |
| 967 | + ] |
| 968 | + }, |
| 969 | + { |
| 970 | + "cell_type": "markdown", |
| 971 | + "metadata": { |
| 972 | + "id": "4IiDB6f6ivdD" |
| 973 | + }, |
| 974 | + "source": [ |
| 975 | + "**Task 10 Test**" |
| 976 | + ] |
| 977 | + }, |
| 978 | + { |
| 979 | + "cell_type": "code", |
| 980 | + "execution_count": null, |
| 981 | + "metadata": { |
| 982 | + "deletable": false, |
| 983 | + "editable": false, |
| 984 | + "id": "L3UgjCfFivdD", |
| 985 | + "nbgrader": { |
| 986 | + "cell_type": "code", |
| 987 | + "checksum": "2c7a7142a39c84e1d18daa6c160cae60", |
| 988 | + "grade": true, |
| 989 | + "grade_id": "cell-45c955c43e471400", |
| 990 | + "locked": true, |
| 991 | + "points": 1, |
| 992 | + "schema_version": 3, |
| 993 | + "solution": false, |
| 994 | + "task": false |
| 995 | + } |
| 996 | + }, |
| 997 | + "outputs": [], |
| 998 | + "source": [ |
| 999 | + "# Task 10 - Test\n", |
| 1000 | + "\n", |
| 1001 | + "# Hidden tests - you will see the results when you submit to Canvas" |
| 1002 | + ] |
| 1003 | + }, |
| 1004 | + { |
| 1005 | + "cell_type": "markdown", |
| 1006 | + "metadata": { |
| 1007 | + "id": "b_CZNPZAlw71" |
| 1008 | + }, |
| 1009 | + "source": [ |
| 1010 | + "**Task 11** - Identify the number of cell phones per person in the US in 2017\n", |
| 1011 | + "\n", |
| 1012 | + "* Create a one-row subset of `geo_cell_phone_population` with data on cell phone ownership in the United States for the year 2017.\n", |
| 1013 | + "* Call this subset DataFrame `US_2017`.\n", |
| 1014 | + "* Print `US_2017`." |
| 1015 | + ] |
| 1016 | + }, |
| 1017 | + { |
| 1018 | + "cell_type": "code", |
| 1019 | + "execution_count": null, |
| 1020 | + "metadata": { |
| 1021 | + "deletable": false, |
| 1022 | + "id": "Y0hRRvc1lw8B", |
| 1023 | + "nbgrader": { |
| 1024 | + "cell_type": "code", |
| 1025 | + "checksum": "a0c775ef5f419d97070af229fe40c354", |
| 1026 | + "grade": false, |
| 1027 | + "grade_id": "cell-665e83d11e594d90", |
| 1028 | + "locked": false, |
| 1029 | + "schema_version": 3, |
| 1030 | + "solution": true, |
| 1031 | + "task": false |
| 1032 | + } |
| 1033 | + }, |
| 1034 | + "outputs": [], |
| 1035 | + "source": [ |
| 1036 | + "# Task 11\n", |
| 1037 | + "\n", |
| 1038 | + "# Determine the number of cell phones per person in the US in 2017\n", |
| 1039 | + "\n", |
| 1040 | + "# YOUR CODE HERE\n", |
| 1041 | + "raise NotImplementedError()\n", |
| 1042 | + "\n", |
| 1043 | + "# View the DataFrame\n", |
| 1044 | + "US_2017" |
| 1045 | + ] |
| 1046 | + }, |
| 1047 | + { |
| 1048 | + "cell_type": "markdown", |
| 1049 | + "metadata": { |
| 1050 | + "id": "mIDryQfKlw8C" |
| 1051 | + }, |
| 1052 | + "source": [ |
| 1053 | + "**Task 11 Test**" |
| 1054 | + ] |
| 1055 | + }, |
| 1056 | + { |
| 1057 | + "cell_type": "code", |
| 1058 | + "execution_count": null, |
| 1059 | + "metadata": { |
| 1060 | + "deletable": false, |
| 1061 | + "editable": false, |
| 1062 | + "id": "wL0MypzFlw8C", |
| 1063 | + "nbgrader": { |
| 1064 | + "cell_type": "code", |
| 1065 | + "checksum": "912e932a02c4192868d095b526a831e4", |
| 1066 | + "grade": true, |
| 1067 | + "grade_id": "cell-ea08fdda80cf9731", |
| 1068 | + "locked": true, |
| 1069 | + "points": 1, |
| 1070 | + "schema_version": 3, |
| 1071 | + "solution": false, |
| 1072 | + "task": false |
| 1073 | + } |
| 1074 | + }, |
| 1075 | + "outputs": [], |
| 1076 | + "source": [ |
| 1077 | + "# Task 11 - Test\n", |
| 1078 | + "\n", |
| 1079 | + "# Hidden tests - you will see the results when you submit to Canvas" |
| 1080 | + ] |
| 1081 | + }, |
| 1082 | + { |
| 1083 | + "cell_type": "markdown", |
| 1084 | + "metadata": { |
| 1085 | + "deletable": false, |
| 1086 | + "editable": false, |
| 1087 | + "id": "HTl_zamAtfJa", |
| 1088 | + "nbgrader": { |
| 1089 | + "cell_type": "markdown", |
| 1090 | + "checksum": "815cb8dd3b19d79fd553f23d9a773b03", |
| 1091 | + "grade": false, |
| 1092 | + "grade_id": "cell-4acad6efd0ae146c", |
| 1093 | + "locked": true, |
| 1094 | + "schema_version": 3, |
| 1095 | + "solution": false, |
| 1096 | + "task": false |
| 1097 | + } |
| 1098 | + }, |
| 1099 | + "source": [ |
| 1100 | + "**Task 12** - Describe the numeric variables in `geo_cell_phone_population`\n", |
| 1101 | + "\n", |
| 1102 | + "* Calculate the summary statistics for the quantitative variables in `geo_cell_phone_population` using `.describe()`.\n", |
| 1103 | + "* Find the mean value for `phones_per_person` and assign it to the variable `mean_phones`. Define your value out to two decimal points.\n" |
| 1104 | + ] |
| 1105 | + }, |
| 1106 | + { |
| 1107 | + "cell_type": "code", |
| 1108 | + "execution_count": null, |
| 1109 | + "metadata": { |
| 1110 | + "deletable": false, |
| 1111 | + "id": "HGKKIqAktfJn", |
| 1112 | + "nbgrader": { |
| 1113 | + "cell_type": "code", |
| 1114 | + "checksum": "8773b60013ce17644af742cd4c6a356d", |
| 1115 | + "grade": false, |
| 1116 | + "grade_id": "cell-181c9805c52dfda8", |
| 1117 | + "locked": false, |
| 1118 | + "schema_version": 3, |
| 1119 | + "solution": true, |
| 1120 | + "task": false |
| 1121 | + } |
| 1122 | + }, |
| 1123 | + "outputs": [], |
| 1124 | + "source": [ |
| 1125 | + "# Task 12\n", |
| 1126 | + "\n", |
| 1127 | + "# YOUR CODE HERE\n", |
| 1128 | + "raise NotImplementedError()" |
| 1129 | + ] |
| 1130 | + }, |
| 1131 | + { |
| 1132 | + "cell_type": "markdown", |
| 1133 | + "metadata": { |
| 1134 | + "id": "4Nh0qP1ptfJn" |
| 1135 | + }, |
| 1136 | + "source": [ |
| 1137 | + "**Task 12 Test**" |
| 1138 | + ] |
| 1139 | + }, |
| 1140 | + { |
| 1141 | + "cell_type": "code", |
| 1142 | + "execution_count": null, |
| 1143 | + "metadata": { |
| 1144 | + "deletable": false, |
| 1145 | + "editable": false, |
| 1146 | + "id": "cBZg6p1VtfJo", |
| 1147 | + "nbgrader": { |
| 1148 | + "cell_type": "code", |
| 1149 | + "checksum": "012a6f5c818c64f8ed1570906eea15b3", |
| 1150 | + "grade": true, |
| 1151 | + "grade_id": "cell-0a0cfb1ac7acc279", |
| 1152 | + "locked": true, |
| 1153 | + "points": 1, |
| 1154 | + "schema_version": 3, |
| 1155 | + "solution": false, |
| 1156 | + "task": false |
| 1157 | + } |
| 1158 | + }, |
| 1159 | + "outputs": [], |
| 1160 | + "source": [ |
| 1161 | + "# Task 12 - Test\n", |
| 1162 | + "\n", |
| 1163 | + "# Hidden tests - you will see the results when you submit to Canvas" |
| 1164 | + ] |
| 1165 | + }, |
| 1166 | + { |
| 1167 | + "cell_type": "markdown", |
| 1168 | + "metadata": { |
| 1169 | + "id": "wBQCMGrkw69w" |
| 1170 | + }, |
| 1171 | + "source": [ |
| 1172 | + "**Task 13** - Subset the DataFrame for 2017\n", |
| 1173 | + "\n", |
| 1174 | + "* Create a new dataframe called `df2017` that includes **only** records from `geo_cell_phone_population` that ocurred in 2017." |
| 1175 | + ] |
| 1176 | + }, |
| 1177 | + { |
| 1178 | + "cell_type": "code", |
| 1179 | + "execution_count": null, |
| 1180 | + "metadata": { |
| 1181 | + "deletable": false, |
| 1182 | + "id": "_EKPYqW-w698", |
| 1183 | + "nbgrader": { |
| 1184 | + "cell_type": "code", |
| 1185 | + "checksum": "50dd62f311ea30c217ec74206b8b42b9", |
| 1186 | + "grade": false, |
| 1187 | + "grade_id": "cell-f3fa17e15b5174ac", |
| 1188 | + "locked": false, |
| 1189 | + "schema_version": 3, |
| 1190 | + "solution": true, |
| 1191 | + "task": false |
| 1192 | + } |
| 1193 | + }, |
| 1194 | + "outputs": [], |
| 1195 | + "source": [ |
| 1196 | + "# Task 13\n", |
| 1197 | + "\n", |
| 1198 | + "# Create a new dataframe called df2017 that includes only records from geo_cell_phone_population that ocurred in 2017.\n", |
| 1199 | + "\n", |
| 1200 | + "# YOUR CODE HERE\n", |
| 1201 | + "raise NotImplementedError()" |
| 1202 | + ] |
| 1203 | + }, |
| 1204 | + { |
| 1205 | + "cell_type": "markdown", |
| 1206 | + "metadata": { |
| 1207 | + "id": "QuLy4qwrw698" |
| 1208 | + }, |
| 1209 | + "source": [ |
| 1210 | + "**Task 13 Test**" |
| 1211 | + ] |
| 1212 | + }, |
| 1213 | + { |
| 1214 | + "cell_type": "code", |
| 1215 | + "execution_count": null, |
| 1216 | + "metadata": { |
| 1217 | + "deletable": false, |
| 1218 | + "editable": false, |
| 1219 | + "id": "S0rU2pGWw698", |
| 1220 | + "nbgrader": { |
| 1221 | + "cell_type": "code", |
| 1222 | + "checksum": "3ec1b21a811f55002c03f4f9f54fcf3e", |
| 1223 | + "grade": true, |
| 1224 | + "grade_id": "cell-b19a6956b5dddadb", |
| 1225 | + "locked": true, |
| 1226 | + "points": 1, |
| 1227 | + "schema_version": 3, |
| 1228 | + "solution": false, |
| 1229 | + "task": false |
| 1230 | + } |
| 1231 | + }, |
| 1232 | + "outputs": [], |
| 1233 | + "source": [ |
| 1234 | + "# Task 13 - Test\n", |
| 1235 | + "\n", |
| 1236 | + "# Hidden tests - you will see the results when you submit to Canvas" |
| 1237 | + ] |
| 1238 | + }, |
| 1239 | + { |
| 1240 | + "cell_type": "markdown", |
| 1241 | + "metadata": { |
| 1242 | + "id": "Rww_2EpHyd4K" |
| 1243 | + }, |
| 1244 | + "source": [ |
| 1245 | + "**Task 14** - Identify the five countries with the most cell phones per person in 2017\n", |
| 1246 | + "\n", |
| 1247 | + "* Sort the `df2017` DataFrame by `phones_per_person` in descending order and assign the result to `df2017_top`. Your new DataFrame should only have **five** rows (Hint: use `.head()` to return only five rows).\n", |
| 1248 | + "* Print the first 5 records of `df2017_top`." |
| 1249 | + ] |
| 1250 | + }, |
| 1251 | + { |
| 1252 | + "cell_type": "code", |
| 1253 | + "execution_count": null, |
| 1254 | + "metadata": { |
| 1255 | + "deletable": false, |
| 1256 | + "id": "h6ym9Dwhyd4V", |
| 1257 | + "nbgrader": { |
| 1258 | + "cell_type": "code", |
| 1259 | + "checksum": "7a116d8d8ab46d5494cec232cfc25c12", |
| 1260 | + "grade": false, |
| 1261 | + "grade_id": "cell-c9b701bfe897edf5", |
| 1262 | + "locked": false, |
| 1263 | + "schema_version": 3, |
| 1264 | + "solution": true, |
| 1265 | + "task": false |
| 1266 | + } |
| 1267 | + }, |
| 1268 | + "outputs": [], |
| 1269 | + "source": [ |
| 1270 | + "# Task 14\n", |
| 1271 | + "\n", |
| 1272 | + "# Sort the df2017 dataframe by phones_per_person in descending order\n", |
| 1273 | + "# Return only five (5) rows\n", |
| 1274 | + "\n", |
| 1275 | + "# YOUR CODE HERE\n", |
| 1276 | + "raise NotImplementedError()\n", |
| 1277 | + "\n", |
| 1278 | + "# View the df2017_top DataFrame\n", |
| 1279 | + "df2017_top" |
| 1280 | + ] |
| 1281 | + }, |
| 1282 | + { |
| 1283 | + "cell_type": "markdown", |
| 1284 | + "metadata": { |
| 1285 | + "id": "7WBox_Axyd4W" |
| 1286 | + }, |
| 1287 | + "source": [ |
| 1288 | + "**Task 14 Test**" |
| 1289 | + ] |
| 1290 | + }, |
| 1291 | + { |
| 1292 | + "cell_type": "code", |
| 1293 | + "execution_count": null, |
| 1294 | + "metadata": { |
| 1295 | + "deletable": false, |
| 1296 | + "editable": false, |
| 1297 | + "id": "ePj-a6rLyd4W", |
| 1298 | + "nbgrader": { |
| 1299 | + "cell_type": "code", |
| 1300 | + "checksum": "7baa090a5b1136f9576ed19a1424a180", |
| 1301 | + "grade": true, |
| 1302 | + "grade_id": "cell-5f6fffc9db1b9492", |
| 1303 | + "locked": true, |
| 1304 | + "points": 1, |
| 1305 | + "schema_version": 3, |
| 1306 | + "solution": false, |
| 1307 | + "task": false |
| 1308 | + } |
| 1309 | + }, |
| 1310 | + "outputs": [], |
| 1311 | + "source": [ |
| 1312 | + "# Task 14 - Test\n", |
| 1313 | + "\n", |
| 1314 | + "assert df2017_top.shape == (5,6), 'Make sure you return only five rows'\n" |
| 1315 | + ] |
| 1316 | + }, |
| 1317 | + { |
| 1318 | + "cell_type": "code", |
| 1319 | + "execution_count": null, |
| 1320 | + "metadata": {}, |
| 1321 | + "outputs": [], |
| 1322 | + "source": [] |
| 1323 | + } |
| 1324 | + ], |
| 1325 | + "metadata": { |
| 1326 | + "colab": { |
| 1327 | + "collapsed_sections": [], |
| 1328 | + "name": "LS_DS_Sprint1_AG.ipynb", |
| 1329 | + "provenance": [] |
| 1330 | + }, |
| 1331 | + "kernelspec": { |
| 1332 | + "display_name": "Python 3", |
| 1333 | + "language": "python", |
| 1334 | + "name": "python3" |
| 1335 | + }, |
| 1336 | + "language_info": { |
| 1337 | + "codemirror_mode": { |
| 1338 | + "name": "ipython", |
| 1339 | + "version": 3 |
| 1340 | + }, |
| 1341 | + "file_extension": ".py", |
| 1342 | + "mimetype": "text/x-python", |
| 1343 | + "name": "python", |
| 1344 | + "nbconvert_exporter": "python", |
| 1345 | + "pygments_lexer": "ipython3", |
| 1346 | + "version": "3.8.8" |
| 1347 | + } |
| 1348 | + }, |
| 1349 | + "nbformat": 4, |
| 1350 | + "nbformat_minor": 1 |
| 1351 | +} |
0 commit comments