Skip to content

Latest commit

 

History

History
864 lines (556 loc) · 23.9 KB

RTL_Simulation_Guide_for_HDK_Design_Flow.md

File metadata and controls

864 lines (556 loc) · 23.9 KB

RTL Simulation Guide for HDK Design Flow

Table of Contents

Introduction

The HDK development environment comes with a shell simulation model that supports RTL-level simulation using Vivado XSIM, Synopsys VCS or Siemens Questa RTL simulators. Developers can leverage this simulation model and create test cases in SystemVerilog to verify CL design's functionalities.

alt tag

Quick Start

Use F2 Developer AMI

One easy way is to use the F2 Developer AMI that will be shared privately with the customers. This developer AMI comes with pre-installed Vivado tools and license.

Please refer to the release notes or the supported Vivado version for the exact version of Vivado tools, and the required license components.

Install the HDK and Setup Environment

AWS FPGA HDK can be cloned and installed on your EC2 instance or server by calling:

git clone https://github.com/aws/aws-fpga.git
cd aws-fpga
source hdk_setup.sh

Try Out One of HDK Examples or Write Your Own

# $CL_DIR must be set before running simulations
export CL_DIR=$PWD/hdk/cl/examples/cl_sde

# Simulations are launched from the scripts subdir of the design
cd ${CL_DIR}/verif/scripts

# Run the default test using the VCS SIM
export TEST_NAME=test_ddr
make ${TEST_NAME} VCS=1

# To view the test log files (this is defined by SIM_DIR makefile variable)
cd ${CL_DIR}/verif/sim/vcs/${TEST_NAME}_sv
# Compile log
vi compile.vcs.log
# Simulation run log file
vi ${TEST_NAME}.log

The call of the make ${TEST_NAME} as above executes following steps.

Order Flow Description
1st ip-gen Generate Xilinx IPs. Executed only once when the IPs are initially generated.
NOTE: An IP must be regenerated if the IP's XCI file gets updated
2nd complib Compile Xilinx libraries. Executed only once when the libraries are initially compiled
3rd compile compile RTL source and testbench
4th pre-run Pre-simulation. Generate simulation input files etc
5th run Run the simulation

Xilinx's Library Compilation (COMPLIB_DIR)

When using simulator other than Vivado SIM, the Xilinx's library will be compiled under the COMPLIB_DIR. The default COMPLIB_DIR path is identified as below.

COMPLIB_DIR = $CL_DIR/verif/sim/<simulator>/<simulator>_complib

Compiling the Xilinx's library is very time consuming and can take up to 2 hours to complete. User can skip this step if they already have a pre-compiled Xilinx library that was compiled using the current Vivado version.

Please do as below steps to setup to use the pre-compiled Xilinx library instead of getting it to be compiled for each clean clone of aws-fpga into a new directory.

  • Set the COMPLIB_DIR environment variable pointing to the pre-compiled Xilinx library.
export COMPLIB_DIR=/path/to/user/complib/dir
  • Create a .done file under the COMPLIB_DIR to tell the Makefile system to not recompile
touch $COMPLIB_DIR/.done

Create Your Own Tests for RTL Simulation

SystemVerilog Tests

One fast way to write your own test is to start with an example test from one of the examples designs and customize it for your design. All SV tests must be placed in the verif/tests sub-directory of CL design root and use the ".sv" file extension.

    cl_my_design                 # Custom Logic (CL) design root directory
    |-- build
    |-- design
    |-- software
    |   `--runtime               # C source files and header files for simulation
    +-- verif
        |-- scripts              # Makefiles and file lists
        |-- sim                  # sim results directory
        |-- sv                   # additional CL-specific test bench source
        +-- tests                # test directory

NOTE: All the tests are written to run on 64-bit instances/servers with 64-bit Linux OS. Many of the tests and reference Custom Logic (CL) examples use 64-bit address formats

module test_peek_poke();

`define WR_INSTR_INDEX 64'h1c
`define WR_ADDR_LOW    64'h20
`define WR_ADDR_HIGH   64'h24
`define WR_DATA        64'h28
`define WR_SIZE        64'h2c

`define RD_INSTR_INDEX 64'h3c
`define RD_ADDR_LOW    64'h40
`define RD_ADDR_HIGH   64'h44
`define RD_DATA        64'h48
`define RD_SIZE        64'h4c

`define CNTL_REG       64'h08

`define WR_START_BIT   32'h00000001
`define RD_START_BIT   32'h00000002

   logic [63:0] pcim_address = 64'h0000_0000_1234_0000;

   initial begin

      tb.power_up();

      tb.poke_ocl(`WR_INSTR_INDEX, 0);                   // write index
      tb.poke_ocl(`WR_ADDR_LOW, pcim_address[31:0]);     // write address low
      tb.poke_ocl(`WR_ADDR_HIGH, pcim_address[63:32]);   // write address high
      tb.poke_ocl(`WR_DATA, 32'h0000_0000);              // write data
      tb.poke_ocl(`WR_SIZE, 32'h0000_0002);              // write 32b

      tb.poke_ocl(`RD_INSTR_INDEX, 0);                   // read index
      tb.poke_ocl(`RD_ADDR_LOW, pcim_address[31:0]);     // read address low
      tb.poke_ocl(`RD_ADDR_HIGH, pcim_address[63:32]);   // read address high
      tb.poke_ocl(`RD_DATA, 32'h0000_0000);              // read data
      tb.poke_ocl(`RD_SIZE, 32'h0000_0002);              // read 32b

      tb.poke_ocl(`CNTL_REG, 32'h0003);                  // start read & write

      #500ns;   // give the hardware time to run

      ...

      tb.power_down();

      $finish;
   end

endmodule // test_peek_poke

Once your test is written, you are ready to run a simulation. The /scripts directory is where you must launch all simulations.

cd ${CL_DIR}/verif/scripts
# Compile and run using XSIM by default (NOTE: Do Not include .sv)
make TEST='<your_test_name>'
# To view the test log files, `cd` here
cd ${CL_DIR}/verif/sim/<simulator>/<your_test_name>

If your have Cadence and Synopsys VCS RTL simulator or Modelsim Questa, then add VCS=1 or QUESTA=1.

make TEST='<your_test_name>' VCS=1

All of the default tests include Makefile targets under $CL_DIR/verif/scripts/Makefile.tests. Some tests require additional environment variables to be set to configure the design. HBM specific tests require VCS=1 or QUESTA=1 as well as COMPILE_HBM to be defined.

Use only the SV test APIs supplied with the developer's kit to stimulate your CL design. They were designed specifically to mimic the behavior of the actual AWS Shell logic. If you choose to control CL signaling via another method, proper operation with Shell logic is not guaranteed.

The AWS Shell Interface specification can be found here

Accessing Host Memory During Simulation

Your design may share data between host memory and logic within the CL. To verify your CL is accessing host memory, the test bench includes a host memory implemented using an associative array. The address is the key to locate a 32-bit data value.

   logic [31:0]        sv_host_memory[*];

If you are are using C to verify your CL, then use C domain host memory. Allocate a memory buffer in your C code and pass the pointer to the SV domain. The AXI BFM connected to the PCIM port will use DPI calls to read and write the memory buffer.

Backdoor access to host memory is provided by two functions:

   function void hm_put_byte(input longint unsigned addr, byte d);
   function byte hm_get_byte(input longint unsigned addr);

Use these functions when you need to access data in the host memory. They take zero simulation time and are useful for initializing memory or checking results stored in memory.

Debugging Custom Logic using the AWS HDK

If a simulation fails, developers can debug issues by dumping waves of the simulation and then view them to determine the source of the problem.

The process for dumping and viewing waves can differ depending on the simulator being used. To dump and view waves using the Xilinx Vivado tools included with the AWS HDK:

  • Specify scope of logic for wave dump
  • Re-run simulation to dump waves
  • View waves in Vivado using Tcl

VCS .vpd files can be found under $CL_DIR/verif/sim/vcs/<TEST>_sv/<TEST>.vpd and viewed with DVE.

Protocol Checkers

Xilinx Protocol Checkers are instantiated on all AXI4 and AXIL interfaces in Shell BFM. By default, all the tests run with protocol checkers enabled. If there is a protocol error in any one of the AXI interfaces, then the protocol checker will fire an error as below.

tb.card.fpga.sh.axl_pc_sda_slv_inst.REP   : BIT(         35) :   ERROR : Invalid state x
tb.card.fpga.sh.axi_pc_mstr_inst_pcim.REP : BIT(         33) :   ERROR : Invalid state x
tb.card.fpga.sh.axi_pc_mstr_inst_pcis.REP : BIT(         35) :   ERROR : Invalid state x
tb.card.fpga.sh.axl_pc_ocl_slv_inst.REP   : BIT(         35) :   ERROR : Invalid state x

Please refer to the protocol checker for mapping between bit positions and the protocol errors.

Re-Run Simulation to Dump Waves

Once waves.tcl has been modified, re-run the simulation with make as shown at the top of this document.

View Waves in Vivado Using Tcl

As mentioned above, all simulation results will be placed in sim/vivado/<test_name>. If using the included CL examples, the waves database should appear as tb.wdb.

To view the waves, first create a Tcl file called open_waves.tcl with the following commands:

current_fileset
open_wave_database tb.wdb

Then open Vivado and specify this Tcl file to execute:

vivado -source open_waves.tcl

The design hierarchy and waves should then be visible and can be inspected and debugged

The usage of Vivado for wave debug is beyond the scope of this document. See the Vivado Design Suite Tutorials for more details.

SV Test API Reference

set_virtual_dip_switch

Description

Writes virtual dip switches.

Declaration

task set_virtual_dip_switch(input int slot_id=0, int dip);
Argument Description
slot_id Slot ID
dip 16bit dip switch setting

get_virtual_dip_switch

Description

Reads virtual dip switches.

Declaration

function logic [15:0] get_virtual_dip_switch(input int slot_id=0);
Argument Description
slot_id Slot ID

get_virtual_led

Description

Reads virtual LEDs.

Declaration

function logic [15:0] get_virtual_led(input int slot_id=0);
Argument Description
slot_id Slot ID

kernel_reset

Description

Issues a kernel reset.

Declaration

function void kernel_reset(input int slot_id=0, logic d = 1);
Argument Description
slot_id Slot ID
d reset value

poke

Description

The SV Test API task 'poke' writes 512 bits of data to the CL via the AXI PCIeS interface.

Declaration

task poke(input int slot_id = 0, logic [63:0] addr, logic [511:0] data, logic [5:0] id = 6'h0, DataSize::DATA_SIZE size = DataSize::UINT32, AxiPort::AXI_PORT intf = AxiPort::PORT_DMA_PCIS);
Argument Description
slot_id Slot ID
addr Write Address
data Write Data
id AXI ID
size Data Size
intf AXI CL Port

poke_pcis

Description

The SV Test API task 'poke_pcis' writes 512 bits of data to the CL via the AXI PCIE interface.

Declaration

task poke_pcis(input int slot_id = 0, logic [63:0] addr, logic [511:0] data, logic [63:0] strb, logic [5:0] id = 6'h0);
Argument Description
slot_id Slot ID
addr Write Address
data Write Data
strb Write Strobe
id AXI ID

poke_pcis_wc

Description

The SV Test API task 'poke' writes 64 bits of data to the CL via the AXI PCIeS interface.

Declaration

task poke_pcis_wc(input int slot_id = 0, input logic [63:0] addr, logic [31:0] data [$], logic [5:0] id = 6'h0, logic [2:0] size = 3'd6);
Argument Description
slot_id Slot ID
addr Write Address
data [$] DW array for Write Data
id AXI ID
size Data Size

peek

Description

The SV Test API task 'peek' reads up to 512 bits of data from the CL via the AXI PCIeS interface.

Declaration

task peek(input int slot_id = 0, input logic [63:0] addr, output logic [511:0] data, input logic [5:0] id = 6'h0, DataSize::DATA_SIZE size = DataSize::UINT32, AxiPort::AXI_PORT intf = AxiPort::PORT_DMA_PCIS);
Argument Description
slot_id Slot ID
addr Read Address
data Read Data
id AXI ID
size Data Size
intf AXI CL Port

peek_pcis

Description

The SV Test API function 'task peek_pcis' reads 512 bits of data from the CL via the AXI PCIS interface.

Declaration

task peek_pcis(input int slot_id = 0, logic [63:0] addr, output logic [511:0] data, input logic [5:0] id = 6'h0);
Argument Description
slot_id Slot ID
addr Read Address
data Read Data
id AXI ID

issue_flr

Description

Issues a PCIe Function Level Reset (FLR).

Declaration

task issue_flr(input int slot_id=0);
Argument Description
slot_id Slot ID

nsec_delay

Description

Wait dly nanoseconds.

Declaration

task nsec_delay(input int dly = 10000);
Argument Description
dly delay in nanoseconds

poke_ocl

Description

The SV Test API task 'poke_ocl' writes 32 bits of data to the CL via the AXI OCL interface.

Declaration

task poke_ocl(input int slot_id = 0, logic [63:0] addr, logic [31:0] data, logic [5:0] id = 6'h0);
Argument Description
slot_id Slot ID
addr Write Address
data Write Data
id AXI ID

peek_ocl

Description

The SV Test API function 'task peek_ocl' reads 64 bits of data from the CL via the AXI OCL interface.

Declaration

task peek_ocl(input int slot_id = 0, logic [63:0] addr, output logic [63:0] data, input logic [5:0] id = 6'h0);
Argument Description
slot_id Slot ID
addr Read Address
data Read Data
id AXI ID

poke_sda

Description

The SV Test API task 'poke_sda' writes 32 bits of data to the CL via the AXI OCL interface.

Declaration

task poke_sda(input int slot_id = 0, logic [63:0] addr, logic [31:0] data, logic [5:0] id = 6'h0);
Argument Description
slot_id Slot ID
addr Write Address
data Write Data
id AXI ID

peek_sda

Description

The SV Test API function 'task peek_sda' reads 64 bits of data from the CL via the AXI SDA interface.

Declaration

task peek_sda(input int slot_id = 0, logic [63:0] addr, output logic [63:0] data, input logic [5:0] id = 6'h0);
Argument Description
slot_id Slot ID
addr Read Address
data Read Data
id AXI ID

is_dma_to_cl_done

Description

Returns non-zero if the DMA to the CL is complete.

Declaration

function bit is_dma_to_cl_done(input int slot_id = 0, input int chan);
Argument Description
slot_id Slot ID
chan DMA channel to use (0-3)

is_dma_to_buffer_done

Description

Returns non-zero if the DMA to the buffer is complete.

Declaration

function bit is_dma_to_buffer_done(input int slot_id = 0, input int chan);
Argument Description
slot_id Slot ID
chan DMA channel to use (0-3)

set_chk_clk_freq

Description

The SV test API function 'function void set_chk_clk_freq(input int slot_id = 0, logic chk_freq = 1'b1);' is used to enable frequency checks in shell model.

Declaration

function void set_chk_clk_freq(input int slot_id = 0, logic chk_freq = 1'b1);
Argument Description
slot_id Slot ID
chk_freq enable bit

chk_prot_err_stat

Description

The SV test API function 'function logic chk_prot_err_stat(input int slot_id = 0);' is used to check protocol error status.

Declaration

function logic chk_clk_err_cnt(input int slot_id = 0);
Argument Description
slot_id Slot ID

que_buffer_to_cl

Description

Queues a buffer for the DMA to send data to the CL.

Declaration

function void que_buffer_to_cl(input int slot_id = 0, int chan, logic [63:0] src_addr, logic [63:0] cl_addr, logic [27:0] len);
Argument Description
slot_id Slot ID
chan DMA channel to use (0-3)
src_addr Data's Source Address
cl_addr Custom Logic Address
len Length of DMA in bytes

que_cl_to_buffer

Description

Queues a buffer for the DMA to receive data from the CL.

Declaration

function void que_cl_to_buffer(input int slot_id = 0, int chan, logic [63:0] dst_addr, logic [63:0] cl_addr, logic [27:0] len);
Argument Description
slot_id Slot ID
chan DMA channel to use (0-3)
dst_addr Data's Destination Address
cl_addr Custom Logic Address
len Length of DMA in bytes

start_que_to_cl

Description

Starts the DMA operation to the CL.

Declaration

function void start_que_to_cl(input int slot_id = 0, int chan);
Argument Description
slot_id Slot ID
chan DMA channel to use (0-3)

start_que_to_buffer

Description

Starts the DMA operation from the CL.

Declaration

function void start_que_to_buffer(input int slot_id = 0, int chan);
Argument Description
slot_id Slot ID
chan DMA channel to use (0-3)

map_host_memory

Description

The SV Test API function 'task map_host_memory(input logic [63:0] addr)' maps host memory to 64-bit address.

Declaration

task map_host_memory(input logic [63:0] addr);
Argument Description
addr Address

hm_put_byte

Description

The SV Test API function 'function void hm_put_byte(input longint unsigned addr, byte d)' is used to backdoor load host memory.

Declaration

function void hm_put_byte(input longint unsigned addr, byte d);
Argument Description
addr Address
d data

hm_get_byte

Description

The SV Test API function 'function void hm_get_byte(input longint unsigned addr)' is used to read data from host memory using backdoor.

Declaration

function void hm_get_byte(input longint unsigned addr);
Argument Description
addr Address

C Test API Reference

cl_poke

Description

The C Test API function 'extern void cl_poke(uint64_t addr, uint32_t data)' writes 32 bits of data to the CL via the AXI PCIeS interface. This function calls the SV poke function via DPI calls.

Declaration

extern void cl_poke(uint64_t addr, uint32_t data);
Argument Description
addr Write Address
data Write Data

cl_peek

Description

The C Test API function 'extern void cl_peek(uint64_t addr)' Reads 32 bits of data from the CL via the AXI PCIeS interface. This function calls the SV peek function via DPI calls.

Declaration

extern void cl_peek(uint64_t addr, uint32_t data);
Argument Description
addr Read Address
data Read Data

sv_map_host_memory

Description

The C Test API function 'extern void sv_map_host_memory(uint8_t *memory)' maps host memory to memory allocated by memory buffer. This function calls the SV map_host_memory function via DPI calls.

Declaration

extern void sv_map_host_memory(uint8_t *memory);
Argument Description
*memory pointer to memory buffer

host_memory_putc

Description

The C Test API function 'void host_memory_putc(uint64_t addr, uint8_t data)' is used to backdoor load host memory.

Declaration

void host_memory_putc(uint64_t addr, uint8_t data)
Argument Description
addr Address
data data

host_memory_getc

Description

The C Test API function 'void host_memory_getc(uint64_t addr)' is used to backdoor load host memory.

Declaration

void host_memory_putc(uint64_t addr, uint8_t data)
Argument Description
addr Address

log_printf

Description

The C Test API function 'void log_printf(const char *format, ...)' is used to print messages when running a simulation. The regular 'C' printf will not work when running a 'C' and 'SV' mixed language simulation. This 'C' function calls SV function sv_printf via DPI calls.

Declaration

void log_printf(const char *format, ...);
Argument Description
*format message to be printed

sv_printf

Description

The C Test API function 'extern void sv_printf(char *msg)' is used to send a message buffer to the SV side of simulation.

Declaration

extern void sv_printf(char *msg);
Argument Description
*msg Character buffer

sv_pause

Description

The C test API function 'extern void sv_pause(uint32_t x);' is used to add delay to a simulation.

Declaration

extern void sv_pause(uint32_t x);
Argument Description
x Delay in micro seconds

sv_fpga_start_buffer_to_cl

Description

The C test API function 'extern "DPI-C" task sv_fpga_start_buffer_to_cl;' is used to do DMA data transfer from Host to CL.

Declaration

extern void sv_fpga_start_buffer_to_cl(uint32_t slot_id, uint32_t chan, uint32_t buf_size, const char *wr_buffer, uint64_t cl_addr);
Argument Description
slot_id Slot ID
chan DMA channel
buf_size Size of the buffer
wr_buffer Data to be transferred
cl_addr Destination CL address

sv_fpga_start_cl_to_buffer

Description

The C test API function 'extern "DPI-C" task sv_fpga_start_cl_to_buffer;' is used to do DMA data transfer from Host to CL.

Declaration

extern void sv_fpga_start_cl_to_buffer(uint32_t slot_id, uint32_t chan, uint32_t buf_size, uint64_t cl_addr);
Argument Description
slot_id Slot ID
chan DMA channel
buf_size Size of the buffer
wr_buffer Data to be transferred
cl_addr Destination CL address

get_global_counter_0

Description

The SV test API function 'function logic [63:0] get_global_counter_0(input int slot_id = 0);' is used to get global counter_0 value.

Declaration

function logic [63:0] get_global_counter_0(input int slot_id = 0);
Argument Description
slot_id Slot ID

get_global_counter_1

Description

The SV test API function 'function logic [63:0] get_global_counter_1(input int slot_id = 0);' is used to get global counter_1 value.

Declaration

function logic [63:0] get_global_counter_1(input int slot_id = 0);
Argument Description
slot_id Slot ID