-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmahalanobis_test.go
125 lines (112 loc) · 2.35 KB
/
mahalanobis_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
package mahalanobis
import (
// "fmt"
"github.com/skelterjohn/go.matrix"
"math"
"testing"
)
func is_near(value, expected, epsilon float64) bool {
return math.Abs(value-expected) < epsilon
}
func TestMeanVector(t *testing.T) {
points := matrix.MakeDenseMatrix([]float64{
1, 1, 1,
1, 1, 1,
}, 2, 3)
expected := matrix.MakeDenseMatrix([]float64{
1,
1,
}, 2, 1)
result := MeanVector(points)
if !matrix.Equals(result, expected) {
t.Error()
}
points = matrix.MakeDenseMatrix([]float64{
0, 1, 2,
0, 2, 4,
}, 2, 3)
expected = matrix.MakeDenseMatrix([]float64{
1,
2,
}, 2, 1)
result = MeanVector(points)
if !matrix.Equals(result, expected) {
t.Error()
}
}
func TestCovarianceMatrix(t *testing.T) {
// no (co)variance
// R: var(cbind(c(1, 1), c(1, 1)))
points := matrix.MakeDenseMatrix([]float64{
1, 1,
1, 1,
}, 2, 2)
expected := matrix.MakeDenseMatrix([]float64{
0, 0,
0, 0,
}, 2, 2)
result := CovarianceMatrix(points)
//fmt.Println("covariance:\n", result)
if !matrix.Equals(result, expected) {
t.Error()
}
// diagonale case
// R: var(cbind(c(0, 4, 2, 2), c(2, 2, 0, 4)))
points = matrix.MakeDenseMatrix([]float64{
0, 4, 2, 2,
2, 2, 0, 4,
}, 2, 4)
expected = matrix.MakeDenseMatrix([]float64{
2.66, 0,
0, 2.66,
}, 2, 2)
result = CovarianceMatrix(points)
//fmt.Println("covariance:\n", result)
if !matrix.ApproxEquals(result, expected, 0.01) {
t.Error()
}
// another case
// R: var(cbind(c(9, 3, 5), c(3, 4, 1)))
points = matrix.MakeDenseMatrix([]float64{
9, 3, 5,
3, 4, 1,
}, 2, 3)
expected = matrix.MakeDenseMatrix([]float64{
9.33, -0.66,
-0.66, 2.33,
}, 2, 2)
result = CovarianceMatrix(points)
//fmt.Println("covariance:\n", result)
if !matrix.ApproxEquals(result, expected, 0.01) {
t.Error()
}
}
func TestDistance(t *testing.T) {
// R: x = cbind(c(9, 3, 5), c(3, 4, 1))
points := matrix.MakeDenseMatrix([]float64{
9, 3, 5,
3, 4, 1,
}, 2, 3)
target := matrix.MakeDenseMatrix([]float64{
1,
1,
}, 2, 1)
square, err := DistanceSquare(points, target)
if err != nil {
t.Fatal(err)
}
var expected float64
expected = 4.08
if !is_near(square, expected, 0.01) {
t.Error()
}
// R: mahalanobis(c(1,1), colMeans(x), var(x))
distance, err := Distance(points, target)
if err != nil {
t.Fatal(err)
}
expected = 2.02
if !is_near(distance, expected, 0.01) {
t.Error()
}
}