forked from taichi-dev/taichi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomet_aot.py
162 lines (127 loc) · 3.58 KB
/
comet_aot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import math
import os
from taichi.lang.impl import grouped
import taichi as ti
parser = argparse.ArgumentParser()
parser.add_argument("--arch", type=str)
args = parser.parse_args()
if args.arch == "cuda":
arch = ti.cuda
elif args.arch == "x64":
arch = ti.x64
else:
assert False
ti.init(arch=arch)
dim = 3
N = 1024 * 8
dt = 2e-4
steps = 7
sun = ti.Vector([0.5, 0.5, 0.0])
gravity = 0.5
pressure = 0.3
tail_paticle_scale = 0.4
color_init = 0.3
color_decay = 1.6
vel_init = 0.07
res = 640
inv_m = ti.field(ti.f32)
color = ti.field(ti.f32)
x = ti.Vector.field(dim, ti.f32)
v = ti.Vector.field(dim, ti.f32)
ti.root.bitmasked(ti.i, N).place(x, v, inv_m, color)
count = ti.field(ti.i32, ())
img = ti.field(ti.f32, (res, res))
sym_arr = ti.graph.Arg(ti.graph.ArgKind.NDARRAY,
'arr',
ti.f32,
field_dim=3,
element_shape=())
img_c = 4
@ti.kernel
def img_to_ndarray(arr: ti.types.ndarray()):
for I in grouped(img):
for c in range(img_c):
arr[I, c] = img[I]
@ti.func
def rand_unit_2d():
a = ti.random() * 2 * math.pi
return ti.Vector([ti.cos(a), ti.sin(a)])
@ti.func
def rand_unit_3d():
u = rand_unit_2d()
s = ti.random() * 2 - 1
c = ti.sqrt(1 - s**2)
return ti.Vector([c * u[0], c * u[1], s])
@ti.kernel
def substep():
ti.no_activate(x)
for i in x:
r = x[i] - sun
r_sq_inverse = r / r.norm(1e-3)**3
acceleration = (pressure * inv_m[i] - gravity) * r_sq_inverse
v[i] += acceleration * dt
x[i] += v[i] * dt
color[i] *= ti.exp(-dt * color_decay)
if not all(-0.1 <= x[i] <= 1.1):
ti.deactivate(x.snode.parent(), [i])
@ti.kernel
def generate():
r = x[0] - sun
n_tail_paticles = int(tail_paticle_scale / r.norm(1e-3)**2)
for _ in range(n_tail_paticles):
r = x[0]
if ti.static(dim == 3):
r = rand_unit_3d()
else:
r = rand_unit_2d()
xi = ti.atomic_add(count[None], 1) % (N - 1) + 1
x[xi] = x[0]
v[xi] = r * vel_init + v[0]
inv_m[xi] = 0.5 + ti.random()
color[xi] = color_init
@ti.kernel
def render():
for p in ti.grouped(img):
img[p] = 1e-6 / (p / res - ti.Vector([sun.x, sun.y])).norm(1e-4)**3
for i in x:
p = int(ti.Vector([x[i].x, x[i].y]) * res)
img[p] += color[i]
@ti.kernel
def initialize():
inv_m[0] = 0
x[0].x = +0.5
x[0].y = -0.01
v[0].x = +0.6
v[0].y = +0.4
color[0] = 1
def save_kernels(arch):
mod = ti.aot.Module()
# Initialize
g_init_builder = ti.graph.GraphBuilder()
g_init_builder.dispatch(initialize)
# Update Per Iter
g_update_builder = ti.graph.GraphBuilder()
g_update_builder.dispatch(generate)
substep_builder = g_update_builder.create_sequential()
substep_builder.dispatch(substep)
for i in range(steps):
g_update_builder.append(substep_builder)
g_update_builder.dispatch(render)
g_update_builder.dispatch(img_to_ndarray, sym_arr)
# Compile to Graph
g_init = g_init_builder.compile()
g_update = g_update_builder.compile()
mod.add_graph('init', g_init)
mod.add_graph('update', g_update)
mod.add_field("inv_m", inv_m)
mod.add_field("color", color)
mod.add_field("x", x)
mod.add_field("v", v)
mod.add_field("count", count)
mod.add_field("img", img)
assert "TAICHI_AOT_FOLDER_PATH" in os.environ.keys()
tmpdir = str(os.environ["TAICHI_AOT_FOLDER_PATH"])
mod.save(tmpdir)
if __name__ == '__main__':
save_kernels(arch=arch)