-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTargetLanguage.hs
591 lines (555 loc) · 28.4 KB
/
TargetLanguage.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
-- | Definition of the target language
module TargetLanguage where
import Control.Monad.State.Strict
import Data.Foldable (fold)
import Data.GADT.Compare (GEq (..))
import Data.List (intersperse)
import Data.Type.Equality ((:~:) (Refl))
import qualified Data.Vector.Unboxed.Sized as V (map, replicate, sum)
import GHC.TypeNats (KnownNat)
import Count
import Env
import Operation
import Types
-- | Terms of the target language
data TTerm env t where
Var :: Idx env a -> TTerm env a
Lambda :: TTerm (a ': env) b -> TTerm env (a -> b)
Let :: TTerm env a -> TTerm (a ': env) b -> TTerm env b
App :: TTerm env (a -> b) -> TTerm env a -> TTerm env b
Unit :: TTerm env ()
Pair :: TTerm env a -> TTerm env b -> TTerm env (a, b)
Fst :: TTerm env (a, b) -> TTerm env a
Snd :: TTerm env (a, b) -> TTerm env b
Inl :: TTerm env a -> TTerm env (Either a b)
Inr :: TTerm env b -> TTerm env (Either a b)
Case :: TTerm env (Either a b) -> TTerm (a ': env) c -> TTerm (b ': env) c -> TTerm env c
Op :: (a ~ UnLin a, b ~ UnLin b) => Operation a b -> TTerm env a -> TTerm env b
Map :: KnownNat n => TTerm env (Scal -> Scal) -> TTerm env (Vect n) -> TTerm env (Vect n)
Map1 :: KnownNat n => TTerm (Scal ': env) Scal -> TTerm env (Vect n) -> TTerm env (Vect n)
Replicate :: KnownNat n => TTerm env Scal -> TTerm env (Vect n)
Sum :: KnownNat n => TTerm env (Vect n) -> TTerm env Scal
LinFun :: (LT a, LT b) => LinTTerm env '[a] b -> TTerm env (LFun a b)
deriving instance Show (TTerm env a)
-- | A sort-of pointful language that encodes a linear function, in the sense
-- of a commutative monoid homomorphism. The domain is the linear environment
-- @lenv@; the codomain is @t@. The linear function also has access to
-- unrestricted variables in the environment @env@ inherited from the
-- surrounding non-linear computation.
data LinTTerm env lenv t where
LinApp :: (LTenv lenv, LT s, LT t) => TTerm env (LFun s t) -> LinTTerm env lenv s -> LinTTerm env lenv t
LinApp' :: LT t => LinTTerm env lenv (s -> t) -> TTerm env s -> LinTTerm env lenv t
LinLam :: LT t => LinTTerm (a ': env) lenv t -> LinTTerm env lenv (a -> t)
LinLet :: (LTenv lenv, LT s, LT t) => LinTTerm env lenv s -> LinTTerm env (s ': lenv) t -> LinTTerm env lenv t
LinVar :: LT t => Idx lenv t -> LinTTerm env lenv t
LinPair :: (LTenv lenv, LT s, LT t) => LinTTerm env lenv s -> LinTTerm env lenv t -> LinTTerm env lenv (s, t)
LinFst :: (LTenv lenv, LT s, LT t) => LinTTerm env lenv (s, t) -> LinTTerm env lenv s
LinSnd :: (LTenv lenv, LT s, LT t) => LinTTerm env lenv (s, t) -> LinTTerm env lenv t
LinInl :: (LTenv lenv, LTU s, LTU t) => LinTTerm env lenv s -> LinTTerm env lenv (LEither s t)
LinInr :: (LTenv lenv, LTU s, LTU t) => LinTTerm env lenv t -> LinTTerm env lenv (LEither s t)
LinCase :: (LTenv lenv, LTU s, LTU t, LTU u) => LinTTerm env lenv (LEither s t) -> LinTTerm env (s ': lenv) u -> LinTTerm env (t ': lenv) u -> LinTTerm env lenv u
LinLOp :: (LTenv lenv, LT b, LT t, s ~ UnLin s, b ~ UnLin b, t ~ UnLin t) => LinearOperation s b t -> TTerm env s -> LinTTerm env lenv b -> LinTTerm env lenv t
LinZero :: (LTenv lenv, LTU t) => LinTTerm env lenv t
LinPlus :: (LTenv lenv, LTU t) => LinTTerm env lenv t -> LinTTerm env lenv t -> LinTTerm env lenv t
LinSingleton :: (LTenv lenv, LT t) => TTerm env s -> LinTTerm env lenv t -> LinTTerm env lenv (Copower s t)
LinCopowFold :: (LTenv lenv, LT b, LTU c) => TTerm env (a -> LFun b c) -> LinTTerm env lenv (Copower a b) -> LinTTerm env lenv c
LinZip :: KnownNat n
=> TTerm env (Vect n)
-> LinTTerm env lenv (Vect n)
-> LinTTerm env lenv (Copower Scal Scal)
LinMap :: KnownNat n
=> LinTTerm env lenv (Scal -> Scal)
-> TTerm env (Vect n)
-> LinTTerm env lenv (Vect n)
LinZipWith :: KnownNat n
=> TTerm env (Scal -> LFun Scal Scal)
-> TTerm env (Vect n)
-> LinTTerm env lenv (Vect n)
-> LinTTerm env lenv (Vect n)
LinReplicate :: KnownNat n => LinTTerm env lenv Scal -> LinTTerm env lenv (Vect n)
LinSum :: KnownNat n => LinTTerm env lenv (Vect n) -> LinTTerm env lenv Scal
LinError :: LinTTerm env lenv a
deriving instance Show (LinTTerm env a b)
type family LTenv lenv where
LTenv (t ': lenv) = (LT t, LTenv lenv)
LTenv '[] = ()
-- | Substitute variable with De Bruijn index zero in a 'TTerm'
substTt :: env :> env' -> TTerm env' u -> TTerm (u ': env) t -> TTerm env' t
substTt w v =
substTt'
Z
v
(Weaken $ \case
Z -> error "substTt: replaced variable should've been replaced"
S i -> w >:> i)
-- | Substitute given variable with the given environment weakening action in a
-- 'TTerm'
substTt' :: Idx env u -> TTerm env' u -> env :> env' -> TTerm env t -> TTerm env' t
substTt' i v w (Var i')
| Just Refl <- geq i i' = v
| otherwise = Var (w >:> i')
substTt' i v w (Lambda e) =
Lambda (substTt' (S i) (sinkTt1 v) (wSink w) e)
substTt' i v w (Let rhs e) =
Let (substTt' i v w rhs)
(substTt' (S i) (sinkTt1 v) (wSink w) e)
substTt' i v w (App f a) = App (substTt' i v w f) (substTt' i v w a)
substTt' _ _ _ Unit = Unit
substTt' i v w (Pair a b) = Pair (substTt' i v w a) (substTt' i v w b)
substTt' i v w (Fst p) = Fst (substTt' i v w p)
substTt' i v w (Snd p) = Snd (substTt' i v w p)
substTt' i v w (Inl p) = Inl (substTt' i v w p)
substTt' i v w (Inr p) = Inr (substTt' i v w p)
substTt' i v w (Case e a b) =
Case (substTt' i v w e)
(substTt' (S i) (sinkTt1 v) (wSink w) a)
(substTt' (S i) (sinkTt1 v) (wSink w) b)
substTt' i v w (Op op y) = Op op (substTt' i v w y)
substTt' i v w (Map a b) = Map (substTt' i v w a) (substTt' i v w b)
substTt' i v w (Map1 a b) = Map1 (substTt' (S i) (sinkTt1 v) (wSink w) a) (substTt' i v w b)
substTt' i v w (Replicate x) = Replicate (substTt' i v w x)
substTt' i v w (Sum a) = Sum (substTt' i v w a)
substTt' i v w (LinFun f) = LinFun (substLTt' i v w f)
-- | Substitute given variable with the given environment weakening action in a
-- 'LinTTerm'
substLTt' :: Idx env u -> TTerm env' u -> env :> env' -> LinTTerm env lenv b -> LinTTerm env' lenv b
substLTt' i v w (LinApp term f) = LinApp (substTt' i v w term) (substLTt' i v w f)
substLTt' i v w (LinApp' f term) = LinApp' (substLTt' i v w f) (substTt' i v w term)
substLTt' i v w (LinLam f) = LinLam (substLTt' (S i) (sinkTt1 v) (wSink w) f)
substLTt' i v w (LinLet f g) = LinLet (substLTt' i v w f) (substLTt' i v w g)
substLTt' _ _ _ (LinVar j) = LinVar j
substLTt' i v w (LinPair f g) = LinPair (substLTt' i v w f) (substLTt' i v w g)
substLTt' i v w (LinFst f) = LinFst (substLTt' i v w f)
substLTt' i v w (LinSnd f) = LinSnd (substLTt' i v w f)
substLTt' i v w (LinInl f) = LinInl (substLTt' i v w f)
substLTt' i v w (LinInr f) = LinInr (substLTt' i v w f)
substLTt' i v w (LinCase f g h) = LinCase (substLTt' i v w f) (substLTt' i v w g) (substLTt' i v w h)
substLTt' i v w (LinLOp op term arg) = LinLOp op (substTt' i v w term) (substLTt' i v w arg)
substLTt' _ _ _ LinZero = LinZero
substLTt' i v w (LinPlus f g) = LinPlus (substLTt' i v w f) (substLTt' i v w g)
substLTt' i v w (LinSingleton term f) = LinSingleton (substTt' i v w term) (substLTt' i v w f)
substLTt' i v w (LinCopowFold term f) = LinCopowFold (substTt' i v w term) (substLTt' i v w f)
substLTt' i v w (LinZip term f) = LinZip (substTt' i v w term) (substLTt' i v w f)
substLTt' i v w (LinMap f arg) = LinMap (substLTt' i v w f) (substTt' i v w arg)
substLTt' i v w (LinZipWith fun term f) = LinZipWith (substTt' i v w fun) (substTt' i v w term) (substLTt' i v w f)
substLTt' i v w (LinReplicate f) = LinReplicate (substLTt' i v w f)
substLTt' i v w (LinSum f) = LinSum (substLTt' i v w f)
substLTt' _ _ _ LinError = LinError
-- | Substitute variable with De Bruijn index zero in a 'LinTTerm'
substLinTt :: LTenv lenv' => lenv :> lenv' -> LinTTerm env lenv' u -> LinTTerm env (u ': lenv) t -> LinTTerm env lenv' t
substLinTt w v =
substLinTt'
Z
v
(Weaken $ \case
Z -> error "substLinTt: replaced variable should've been replaced"
S i -> w >:> i)
-- | Substitute given variable with the given environment weakening action in a
-- 'LinTTerm'
substLinTt' :: LTenv lenv' => Idx lenv u -> LinTTerm env lenv' u -> lenv :> lenv' -> LinTTerm env lenv t -> LinTTerm env lenv' t
substLinTt' i v w (LinApp f a) = LinApp f (substLinTt' i v w a)
substLinTt' i v w (LinApp' a term) = LinApp' (substLinTt' i v w a) term
substLinTt' i v w (LinLam f) = LinLam (substLinTt' i (sinkTtL (wSucc wId) v) w f)
substLinTt' i v w (LinLet rhs e) =
LinLet (substLinTt' i v w rhs)
(substLinTt' (S i) (sinkLinTt (wSucc wId) v) (wSink w) e)
substLinTt' i v w (LinVar i')
| Just Refl <- geq i i' = v
| otherwise = LinVar (w >:> i')
substLinTt' i v w (LinPair a b) = LinPair (substLinTt' i v w a) (substLinTt' i v w b)
substLinTt' i v w (LinFst p) = LinFst (substLinTt' i v w p)
substLinTt' i v w (LinSnd p) = LinSnd (substLinTt' i v w p)
substLinTt' i v w (LinInl p) = LinInl (substLinTt' i v w p)
substLinTt' i v w (LinInr p) = LinInr (substLinTt' i v w p)
substLinTt' i v w (LinCase f g h) =
LinCase (substLinTt' i v w f)
(substLinTt' (S i) (sinkLinTt (wSucc wId) v) (wSink w) g)
(substLinTt' (S i) (sinkLinTt (wSucc wId) v) (wSink w) h)
substLinTt' i v w (LinLOp op term arg) = LinLOp op term (substLinTt' i v w arg)
substLinTt' _ _ _ LinZero = LinZero
substLinTt' i v w (LinPlus a b) = LinPlus (substLinTt' i v w a) (substLinTt' i v w b)
substLinTt' i v w (LinSingleton term f) = LinSingleton term (substLinTt' i v w f)
substLinTt' i v w (LinCopowFold term f) = LinCopowFold term (substLinTt' i v w f)
substLinTt' i v w (LinZip term f) = LinZip term (substLinTt' i v w f)
substLinTt' i v w (LinMap f arg) = LinMap (substLinTt' i v w f) arg
substLinTt' i v w (LinZipWith fun term f) = LinZipWith fun term (substLinTt' i v w f)
substLinTt' i v w (LinReplicate f) = LinReplicate (substLinTt' i v w f)
substLinTt' i v w (LinSum f) = LinSum (substLinTt' i v w f)
substLinTt' _ _ _ LinError = LinError
-- | Evaluate the target language
evalTt :: TTerm '[] t -> t
evalTt = evalTt' VZ
-- | Evaluate the target language in the given environment
evalTt' :: Val env -> TTerm env t -> t
evalTt' env (Var i) = valProject env i
evalTt' env (Lambda e) = \v -> evalTt' (VS v env) e
evalTt' env (Let rhs e) = evalTt' (VS (evalTt' env rhs) env) e
evalTt' env (App f a) = evalTt' env f (evalTt' env a)
evalTt' _ Unit = ()
evalTt' env (Pair a b) = (evalTt' env a, evalTt' env b)
evalTt' env (Fst p) = fst $ evalTt' env p
evalTt' env (Snd p) = snd $ evalTt' env p
evalTt' env (Inl e) = Left $ evalTt' env e
evalTt' env (Inr e) = Right $ evalTt' env e
evalTt' env (Case e a b) = case evalTt' env e of Left v -> evalTt' (VS v env) a
Right v -> evalTt' (VS v env) b
evalTt' env (Op op a) = evalOp op (evalTt' env a)
evalTt' env (Map a b) = V.map (evalTt' env a) (evalTt' env b)
evalTt' env (Map1 a b) = V.map (\v -> evalTt' (VS v env) a) (evalTt' env b)
evalTt' env (Replicate x) = V.replicate (evalTt' env x)
evalTt' env (Sum a) = V.sum (evalTt' env a)
evalTt' env (LinFun f) = lPair lUnit lId `lComp` evalLTt' env f
type family LinEnvType lenv where
LinEnvType '[] = ()
LinEnvType (t ': lenv) = (LinEnvType lenv, t)
-- | Evaluate the linear sublanguage of the target language in the given environment
evalLTt' :: LT (LinEnvType lenv) => Val env -> LinTTerm env lenv b -> LFun (LinEnvType lenv) b
evalLTt' env (LinApp fun arg) = lComp (evalLTt' env arg) (evalTt' env fun)
evalLTt' env (LinApp' fun arg) = evalLTt' env fun `lComp` lEval (evalTt' env arg)
evalLTt' env (LinLam e) = lSwap (\x -> evalLTt' (VS x env) e)
evalLTt' env (LinLet rhs body) = lComp (lPair lId (evalLTt' env rhs)) (evalLTt' env body)
evalLTt' _ (LinVar j) = makeProj j
where makeProj :: (LT (LinEnvType lenv), LT t) => Idx lenv t -> LFun (LinEnvType lenv) t
makeProj Z = lSnd
makeProj (S i) = lFst `lComp` makeProj i
evalLTt' env (LinPair e1 e2) = lPair (evalLTt' env e1) (evalLTt' env e2)
evalLTt' env (LinFst e) = lComp (evalLTt' env e) lFst
evalLTt' env (LinSnd e) = lComp (evalLTt' env e) lSnd
evalLTt' env (LinInl e) = evalLTt' env e `lComp` lInl
evalLTt' env (LinInr e) = evalLTt' env e `lComp` lInr
evalLTt' env (LinCase e a b) =
lPair (evalLTt' env e) lId
`lComp` lCase (lPair lSnd lFst `lComp` evalLTt' env a)
(lPair lSnd lFst `lComp` evalLTt' env b)
evalLTt' env (LinLOp lop term arg) = evalLTt' env arg `lComp` evalLOp lop (evalTt' env term)
evalLTt' _ LinZero = zero
evalLTt' env (LinPlus e1 e2) = plus (evalLTt' env e1) (evalLTt' env e2)
evalLTt' env (LinSingleton e1 e2) = lComp (evalLTt' env e2) (singleton (evalTt' env e1))
evalLTt' env (LinCopowFold fun cp) = lComp (evalLTt' env cp) (lCopowFold (evalTt' env fun))
evalLTt' env (LinZip p d) = evalLTt' env d `lComp` lZip (evalTt' env p)
evalLTt' env (LinMap a f) = evalLTt' env a `lComp` lMap (evalTt' env f)
evalLTt' env (LinZipWith f p d) = evalLTt' env d `lComp` lZipWith (evalTt' env f) (evalTt' env p)
evalLTt' env (LinReplicate e) = evalLTt' env e `lComp` lExpand
evalLTt' env (LinSum e) = evalLTt' env e `lComp` lSum
evalLTt' _ LinError = error "LinError"
sinkTt :: env :> env' -> TTerm env t -> TTerm env' t
sinkTt w (Var i) = Var (w >:> i)
sinkTt w (Lambda e) = Lambda (sinkTt (wSink w) e)
sinkTt w (Let rhs e) = Let (sinkTt w rhs) (sinkTt (wSink w) e)
sinkTt w (App e1 e2) = App (sinkTt w e1) (sinkTt w e2)
sinkTt _ Unit = Unit
sinkTt w (Pair a b) = Pair (sinkTt w a) (sinkTt w b)
sinkTt w (Fst p) = Fst (sinkTt w p)
sinkTt w (Snd p) = Snd (sinkTt w p)
sinkTt w (Inl p) = Inl (sinkTt w p)
sinkTt w (Inr p) = Inr (sinkTt w p)
sinkTt w (Case e a b) = Case (sinkTt w e) (sinkTt (wSink w) a) (sinkTt (wSink w) b)
sinkTt w (Op op a) = Op op (sinkTt w a)
sinkTt w (Map a b) = Map (sinkTt w a) (sinkTt w b)
sinkTt w (Map1 a b) = Map1 (sinkTt (wSink w) a) (sinkTt w b)
sinkTt w (Replicate x) = Replicate (sinkTt w x)
sinkTt w (Sum a) = Sum (sinkTt w a)
sinkTt w (LinFun f) = LinFun (sinkTtL w f)
sinkTt1 :: TTerm env t -> TTerm (a ': env) t
sinkTt1 = sinkTt (wSucc wId)
sinkTtL :: env :> env' -> LinTTerm env lenv b -> LinTTerm env' lenv b
sinkTtL w (LinApp term f) = LinApp (sinkTt w term) (sinkTtL w f)
sinkTtL w (LinApp' f term) = LinApp' (sinkTtL w f) (sinkTt w term)
sinkTtL w (LinLam f) = LinLam (sinkTtL (wSink w) f)
sinkTtL w (LinLet f g) = LinLet (sinkTtL w f) (sinkTtL w g)
sinkTtL _ (LinVar i) = LinVar i
sinkTtL w (LinPair f g) = LinPair (sinkTtL w f) (sinkTtL w g)
sinkTtL w (LinFst f) = LinFst (sinkTtL w f)
sinkTtL w (LinSnd f) = LinSnd (sinkTtL w f)
sinkTtL w (LinInl f) = LinInl (sinkTtL w f)
sinkTtL w (LinInr f) = LinInr (sinkTtL w f)
sinkTtL w (LinCase f g h) = LinCase (sinkTtL w f) (sinkTtL w g) (sinkTtL w h)
sinkTtL w (LinLOp op term arg) = LinLOp op (sinkTt w term) (sinkTtL w arg)
sinkTtL _ LinZero = LinZero
sinkTtL w (LinPlus f g) = LinPlus (sinkTtL w f) (sinkTtL w g)
sinkTtL w (LinSingleton term f) = LinSingleton (sinkTt w term) (sinkTtL w f)
sinkTtL w (LinCopowFold term f) = LinCopowFold (sinkTt w term) (sinkTtL w f)
sinkTtL w (LinZip term f) = LinZip (sinkTt w term) (sinkTtL w f)
sinkTtL w (LinMap f arg) = LinMap (sinkTtL w f) (sinkTt w arg)
sinkTtL w (LinZipWith fun term f) = LinZipWith (sinkTt w fun) (sinkTt w term) (sinkTtL w f)
sinkTtL w (LinReplicate f) = LinReplicate (sinkTtL w f)
sinkTtL w (LinSum f) = LinSum (sinkTtL w f)
sinkTtL _ LinError = LinError
sinkLinTt :: LTenv lenv' => lenv :> lenv' -> LinTTerm env lenv b -> LinTTerm env lenv' b
sinkLinTt w (LinApp term f) = LinApp term (sinkLinTt w f)
sinkLinTt w (LinApp' f term) = LinApp' (sinkLinTt w f) term
sinkLinTt w (LinLam f) = LinLam (sinkLinTt w f)
sinkLinTt w (LinLet f g) = LinLet (sinkLinTt w f) (sinkLinTt (wSink w) g)
sinkLinTt w (LinVar i) = LinVar (w >:> i)
sinkLinTt w (LinPair f g) = LinPair (sinkLinTt w f) (sinkLinTt w g)
sinkLinTt w (LinFst f) = LinFst (sinkLinTt w f)
sinkLinTt w (LinSnd f) = LinSnd (sinkLinTt w f)
sinkLinTt w (LinInl f) = LinInl (sinkLinTt w f)
sinkLinTt w (LinInr f) = LinInr (sinkLinTt w f)
sinkLinTt w (LinCase f g h) = LinCase (sinkLinTt w f) (sinkLinTt (wSink w) g) (sinkLinTt (wSink w) h)
sinkLinTt w (LinLOp op term arg) = LinLOp op term (sinkLinTt w arg)
sinkLinTt _ LinZero = LinZero
sinkLinTt w (LinPlus f g) = LinPlus (sinkLinTt w f) (sinkLinTt w g)
sinkLinTt w (LinSingleton term f) = LinSingleton term (sinkLinTt w f)
sinkLinTt w (LinCopowFold term f) = LinCopowFold term (sinkLinTt w f)
sinkLinTt w (LinZip term f) = LinZip term (sinkLinTt w f)
sinkLinTt w (LinMap f arg) = LinMap (sinkLinTt w f) arg
sinkLinTt w (LinZipWith fun term f) = LinZipWith fun term (sinkLinTt w f)
sinkLinTt w (LinReplicate f) = LinReplicate (sinkLinTt w f)
sinkLinTt w (LinSum f) = LinSum (sinkLinTt w f)
sinkLinTt _ LinError = LinError
-- | Pretty print the augmented lambda calculus in 'TTerm'
--
-- Precedences used are as in Haskell.
printTt :: Int -> [String] -> TTerm env t -> State Int ShowS
printTt _ env (Var i) =
pure $
case drop (idxToInt i) env of
[] -> showString ("ctxtVar" ++ show (idxToInt i - length env + 1))
x:_ -> showString x
printTt d env (Lambda e) = do
name <- ('x' :) . show <$> get
modify (+1)
r <- printTt 0 (name : env) e
pure $ showParen (d > 0) $ showString ("\\" ++ name ++ " -> ") . r
printTt d env topexpr@Let{} = do
let collect :: [String] -> TTerm env a -> State Int ([(String, ShowS)], ShowS)
collect env' (Let rhs e) = do
name <- ('x' :) . show <$> get
modify (+1)
r1 <- printTt 0 env' rhs
(rest, core) <- collect (name : env') e
return ((name, r1) : rest, core)
collect env' e = ([],) <$> printTt 0 env' e
(pairs, core) <- collect env topexpr
pure $ showParen (d > 0) $
showString "let "
. foldr (.) id (intersperse (showString " ; ")
[showString (lhs ++ " = ") . rhs | (lhs, rhs) <- pairs])
. showString " in " . core
printTt d env (App f a) = do
r1 <- printTt 10 env f
r2 <- printTt 11 env a
pure $ showParen (d > 10) $ r1 . showString " " . r2
printTt _ _ Unit = pure (showString "()")
printTt _ env (Pair a b) = do
r1 <- printTt 0 env a
r2 <- printTt 0 env b
pure $ showString "(" . r1 . showString ", " . r2 . showString ")"
printTt d env (Fst p) = showFunctionTt d env [] "fst" [SomeTTerm p]
printTt d env (Snd p) = showFunctionTt d env [] "snd" [SomeTTerm p]
printTt d env (Inl p) = showFunctionTt d env [] "inl" [SomeTTerm p]
printTt d env (Inr p) = showFunctionTt d env [] "inr" [SomeTTerm p]
printTt d env (Case e a b) = do
e' <- printTt 0 env e
name1 <- ('x' :) . show <$> get
modify (+1)
name2 <- ('x' :) . show <$> get
modify (+1)
a' <- printTt 0 (name1 : env) a
b' <- printTt 0 (name2 : env) b
pure $ showParen (d > 0) $
showString "case " . e' . showString (" of { Inl " ++ name1 ++ " -> ")
. a' . showString (" ; Inr " ++ name2 ++ " -> ") . b' . showString " }"
printTt d env (Op op a) = case (op, a) of
(Constant x, Unit) -> pure $ showString (show x)
(EAdd, Pair a1 a2) -> showFunctionTt d env [] "vecadd" [SomeTTerm a1, SomeTTerm a2]
(EProd, Pair a1 a2) -> showFunctionTt d env [] "vecprod" [SomeTTerm a1, SomeTTerm a2]
(EScalAdd, Pair a1 a2) -> binary a1 (6, " + ") a2
(EScalSubt, Pair a1 a2) -> binary a1 (6, " - ") a2
(EScalProd, Pair a1 a2) -> binary a1 (7, " * ") a2
(EScalSin, _) -> showFunctionTt d env [] "sin" [SomeTTerm a]
(EScalCos, _) -> showFunctionTt d env [] "cos" [SomeTTerm a]
(_, _) -> showFunctionTt d env [] ("evalOp " ++ showOp op) [SomeTTerm a]
where
binary :: TTerm env a -> (Int, String) -> TTerm env b -> State Int ShowS
binary left (prec, opstr) right = do
r1 <- printTt (prec + 1) env left
r2 <- printTt (prec + 1) env right
pure $ showParen (d > prec) $ r1 . showString opstr . r2
printTt d env (Map a b) = showFunctionTt d env [] "map" [SomeTTerm a, SomeTTerm b]
printTt d env (Map1 a b) = showFunctionTt d env [] "map1" [SomeTTerm (Lambda a), SomeTTerm b]
printTt d env (Replicate x) = showFunctionTt d env [] "replicate" [SomeTTerm x]
printTt d env (Sum a) = showFunctionTt d env [] "sum" [SomeTTerm a]
printTt d env (LinFun f) = do
r1 <- printLTt d env ["v"] f
pure $ showParen (d > 0) $ showString "\\v -> " . r1
-- | Pretty print the linear sublanguage of the 'TTerm' augmented lambda
-- calculus.
--
-- This recursively calles 'printTt' on the 'TTerm' subterms, and hence
-- inherits precedences from 'printTt'.
printLTt :: Int -> [String] -> [String] -> LinTTerm env lenv b -> State Int ShowS
printLTt d env lenv (LinApp f a) = do
r1 <- printTt 10 env f
r2 <- printLTt 11 env lenv a
pure $ showParen (d > 10) $ r1 . showString " " . r2
printLTt d env lenv (LinApp' f a) = do
r1 <- printLTt 10 env lenv f
r2 <- printTt 11 env a
pure $ showParen (d > 10) $ r1 . showString " " . r2
printLTt d env lenv (LinLam e) = do
name <- ('v' :) . show <$> get
modify (+1)
r <- printLTt 0 (name : env) lenv e
pure $ showParen (d > 0) $ showString ("\\" ++ name ++ " -> ") . r
printLTt d env lenv (LinLet rhs e) = do
name <- ('v' :) . show <$> get
modify (+1)
r1 <- printLTt 0 env lenv rhs
r2 <- printLTt 0 env (name : lenv) e
pure $ showParen (d > 0) $
showString ("let " ++ name ++ " = ") . r1 . showString " in " . r2
printLTt _ _ lenv (LinVar i) =
pure $
case drop (idxToInt i) lenv of
[] -> showString ("linCtxtVar" ++ show (idxToInt i - length lenv + 1))
x:_ -> showString x
printLTt _ env lenv (LinPair f g) = do
r1 <- printLTt 0 env lenv f
r2 <- printLTt 0 env lenv g
pure $ showString "(" . r1 . showString ", " . r2 . showString ")"
printLTt d env lenv (LinFst f) = showFunctionTt d env lenv "fst" [SomeLinTTerm f]
printLTt d env lenv (LinSnd f) = showFunctionTt d env lenv "snd" [SomeLinTTerm f]
printLTt d env lenv (LinInl f) = showFunctionTt d env lenv "inl" [SomeLinTTerm f]
printLTt d env lenv (LinInr f) = showFunctionTt d env lenv "inr" [SomeLinTTerm f]
printLTt d env lenv (LinCase e a b) = do
e' <- printLTt 0 env lenv e
name1 <- ('v' :) . show <$> get
modify (+1)
name2 <- ('v' :) . show <$> get
modify (+1)
a' <- printLTt 0 env (name1 : lenv) a
b' <- printLTt 0 env (name1 : lenv) b
pure $ showParen (d > 0) $
showString "case " . e' . showString (" of { Inl " ++ name1 ++ " -> ")
. a' . showString (" ; Inr " ++ name2 ++ " -> ") . b' . showString " }"
printLTt d env lenv (LinLOp op term arg) = do
r1 <- printTt 11 env term
r2 <- printLTt 11 env lenv arg
pure $ showParen (d > 10) $
showString (showLOp op ++ " ") . r1 . showString " " . r2
printLTt _ _ _ LinZero = pure $ showString "zero"
printLTt d env lenv (LinPlus f g) = showFunctionTt d env lenv "plus" [SomeLinTTerm f, SomeLinTTerm g]
printLTt d env lenv (LinSingleton term f) = showFunctionTt d env lenv "singleton" [SomeTTerm term, SomeLinTTerm f]
printLTt d env lenv (LinCopowFold term f) = showFunctionTt d env lenv "copowfold" [SomeTTerm term, SomeLinTTerm f]
printLTt d env lenv (LinZip term f) = showFunctionTt d env lenv "lzip" [SomeTTerm term, SomeLinTTerm f]
printLTt d env lenv (LinMap f arg) = showFunctionTt d env lenv "lmap" [SomeLinTTerm f, SomeTTerm arg]
printLTt d env lenv (LinZipWith fun term f) = showFunctionTt d env lenv "lzipWith" [SomeTTerm fun, SomeTTerm term, SomeLinTTerm f]
printLTt d env lenv (LinReplicate f) = showFunctionTt d env lenv "lreplicate" [SomeLinTTerm f]
printLTt d env lenv (LinSum f) = showFunctionTt d env lenv "lsum" [SomeLinTTerm f]
printLTt _ _ _ LinError = pure $ showString "error"
data SomeLinTTerm env
= forall a b. SomeLinTTerm (LinTTerm env a b)
| forall a. SomeTTerm (TTerm env a)
showFunctionTt :: Int -> [String] -> [String] -> String -> [SomeLinTTerm env] -> State Int ShowS
showFunctionTt d env lenv funcname args = do
rs <- mapM (\case SomeLinTTerm t -> (showString " " .) <$> printLTt 11 env lenv t
SomeTTerm t -> (showString " " .) <$> printTt 11 env t)
args
pure $
showParen (d > 10) $
showString funcname .
foldr (.) id rs
prettyTt :: TTerm env a -> String
prettyTt term = evalState (printTt 0 [] term) 1 ""
prettyLTt :: LinTTerm env lenv b -> String
prettyLTt t = evalState (printLTt 0 [] [] t) 1 ""
-- instance Show (TTerm env a) where
-- showsPrec p term = evalState (printLam p [] term) 1
-- | Count the uses of a variable in an expression
usesOfTt :: Idx env t -> TTerm env a -> OccCount
usesOfTt x t = fold (usesOfTt' x t)
-- | Count the uses of the components of a variable in an expression
usesOfTt' :: Idx env t -> TTerm env a -> Layout t OccCount
usesOfTt' i = \case
Var i'
| Just Refl <- geq i i' -> LyLeaf (OccCount 1 1)
| otherwise -> mempty
Lambda e -> occRepeatRuntime <$> usesOfTt' (S i) e -- the lambda may be invoked many times!
Let rhs e -> usesOfTt' i rhs <> usesOfTt' (S i) e
App f a -> usesOfTt' i f <> usesOfTt' i a
Unit -> mempty
Pair a b -> usesOfTt' i a <> usesOfTt' i b
p@(Fst p') -> maybe (usesOfTt' i p') (layoutFromPick (OccCount 1 1)) (getPick i p)
p@(Snd p') -> maybe (usesOfTt' i p') (layoutFromPick (OccCount 1 1)) (getPick i p)
Inl e -> usesOfTt' i e
Inr e -> usesOfTt' i e
Case e a b -> usesOfTt' i e <> (occEither <$> usesOfTt' (S i) a <*> usesOfTt' (S i) b) -- branching
Op _ a -> usesOfTt' i a
Map a b -> usesOfTt' i a <> usesOfTt' i b
Map1 a b -> usesOfTt' (S i) a <> usesOfTt' i b
Replicate x -> usesOfTt' i x
Sum a -> usesOfTt' i a
LinFun f -> usesOfTtL i f
where
getPick :: Idx env t -> TTerm env a -> Maybe (TupPick t a)
getPick j (Var j') | Just Refl <- geq j j' = Just TPHere
getPick j (Fst e) = TPFst <$> getPick j e
getPick j (Snd e) = TPSnd <$> getPick j e
getPick _ _ = Nothing
-- | Count the uses of the components of a variable in an expression in the linear sublanguage of the target language
usesOfTtL :: Idx env t -> LinTTerm env lenv b -> Layout t OccCount
usesOfTtL i = \case
LinApp term f -> usesOfTt' i term <> usesOfTtL i f
LinApp' f term -> usesOfTtL i f <> usesOfTt' i term
LinLam f -> occRepeatRuntime <$> usesOfTtL (S i) f -- the lambda may be invoked many times!
LinLet f g -> usesOfTtL i f <> usesOfTtL i g
LinVar _ -> mempty
LinPair f g -> usesOfTtL i f <> usesOfTtL i g
LinFst f -> usesOfTtL i f
LinSnd f -> usesOfTtL i f
LinInl f -> usesOfTtL i f
LinInr f -> usesOfTtL i f
LinCase f g h -> usesOfTtL i f <> (occEither <$> usesOfTtL i g <*> usesOfTtL i h) -- branching
LinLOp _ term arg -> usesOfTt' i term <> usesOfTtL i arg
LinZero -> mempty
LinPlus f g -> usesOfTtL i f <> usesOfTtL i g
LinSingleton term f -> usesOfTt' i term <> usesOfTtL i f
LinCopowFold term f -> usesOfTt' i term <> usesOfTtL i f
LinZip term f -> usesOfTt' i term <> usesOfTtL i f
LinMap f term -> usesOfTtL i f <> usesOfTt' i term
LinZipWith term term' f -> usesOfTt' i term <> usesOfTt' i term' <> usesOfTtL i f
LinReplicate f -> usesOfTtL i f
LinSum f -> usesOfTtL i f
LinError -> mempty
usesOfLinVar :: Idx lenv t -> LinTTerm env lenv b -> Layout t OccCount
usesOfLinVar i = \case
LinApp _ f -> usesOfLinVar i f
LinApp' f _ -> usesOfLinVar i f
LinLam f -> occRepeatRuntime <$> usesOfLinVar i f -- the lambda may be invoked many times!
LinLet f g -> usesOfLinVar i f <> usesOfLinVar (S i) g
LinVar j
| Just Refl <- geq i j -> LyLeaf (OccCount 1 1)
| otherwise -> mempty
LinPair f g -> usesOfLinVar i f <> usesOfLinVar i g
f@(LinFst g) -> maybe (usesOfLinVar i g) (layoutFromPick (OccCount 1 1)) (getPickLin i f)
f@(LinSnd g) -> maybe (usesOfLinVar i g) (layoutFromPick (OccCount 1 1)) (getPickLin i f)
LinInl f -> usesOfLinVar i f
LinInr f -> usesOfLinVar i f
LinCase f g h -> usesOfLinVar i f <> (occEither <$> usesOfLinVar (S i) g <*> usesOfLinVar (S i) h) -- branching
LinLOp _ _ arg -> usesOfLinVar i arg
LinZero -> mempty
LinPlus f g -> usesOfLinVar i f <> usesOfLinVar i g
LinSingleton _ f -> usesOfLinVar i f
LinCopowFold _ f -> usesOfLinVar i f
LinZip _ f -> usesOfLinVar i f
LinMap f _ -> usesOfLinVar i f
LinZipWith _ _ f -> usesOfLinVar i f
LinReplicate f -> usesOfLinVar i f
LinSum f -> usesOfLinVar i f
LinError -> mempty
where
getPickLin :: Idx lenv t -> LinTTerm env lenv b -> Maybe (TupPick t b)
getPickLin j (LinVar j') | Just Refl <- geq j j' = Just TPHere
getPickLin j (LinFst e) = TPFst <$> getPickLin j e
getPickLin j (LinSnd e) = TPSnd <$> getPickLin j e
getPickLin _ _ = Nothing