-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathtrain_retriever.py
175 lines (136 loc) · 6.97 KB
/
train_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from transformers import RobertaTokenizer, RobertaModel, AutoModelWithLMHead, AutoTokenizer, Trainer, AutoModel, BertLMHeadModel
from datasets.load import load_dataset, load_from_disk
import torch, os, sys, time, random, json, argparse
from rouge_score.rouge_scorer import RougeScorer
from torch.utils.data import Dataset, DataLoader
from torch.optim import AdamW
from torch.utils.data.distributed import DistributedSampler
class QuestionReferenceDensity(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.question_encoder = AutoModel.from_pretrained("facebook/contriever-msmarco")
self.reference_encoder = AutoModel.from_pretrained("facebook/contriever-msmarco")
total = sum([param.nelement() for param in self.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
def mean_pooling(self, token_embeddings, mask):
token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.)
sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
return sentence_embeddings
def forward(self, question, pos, neg):
global args
q = self.question_encoder(**question)
r_pos = self.reference_encoder(**pos)
r_neg = self.reference_encoder(**neg)
cls_q = self.mean_pooling(q[0], question["attention_mask"])
cls_q /= args.temp
cls_r_pos = self.mean_pooling(r_pos[0], pos["attention_mask"])
cls_r_neg = self.mean_pooling(r_neg[0], neg["attention_mask"])
l_pos = torch.matmul(cls_q, torch.transpose(cls_r_pos, 0, 1))
l_neg = torch.matmul(cls_q, torch.transpose(cls_r_neg, 0, 1))
return l_pos, l_neg
@staticmethod
def loss(l_pos, l_neg):
return torch.nn.functional.cross_entropy(torch.cat([l_pos, l_neg], dim=1), torch.arange(0, len(l_pos), dtype=torch.long, device=args.device))
@staticmethod
def num_correct(l_pos, l_neg):
return ((torch.diag(l_pos) > torch.diag(l_neg))==True).sum()
@staticmethod
def acc(l_pos, l_neg):
return ((torch.diag(l_pos) > torch.diag(l_neg))==True).sum() / len(l_pos)
class WarmupLinearScheduler(torch.optim.lr_scheduler.LambdaLR):
def __init__(self, optimizer, warmup, total, ratio, last_epoch=-1):
self.warmup = warmup
self.total = total
self.ratio = ratio
super(WarmupLinearScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup:
return (1 - self.ratio) * step / float(max(1, self.warmup))
return max(
0.0,
1.0 + (self.ratio - 1) * (step - self.warmup) / float(max(1.0, self.total - self.warmup)),
)
def move_dict_to_device(obj, device):
for key in obj:
obj[key] = obj[key].to(device)
def collate(data):
question = tokenizer([item["question"] for item in data], return_tensors="pt", padding=True, truncation=True)
positive_reference = tokenizer([item["positive_reference"] for item in data], return_tensors="pt", padding=True, truncation=True)
negative_reference = tokenizer([item["negative_reference"] for item in data], return_tensors="pt", padding=True, truncation=True)
for key in question: question[key] = question[key].to(args.device)
for key in positive_reference: positive_reference[key] = positive_reference[key].to(args.device)
for key in negative_reference: negative_reference[key] = negative_reference[key].to(args.device)
return question, positive_reference, negative_reference
def eval():
# print("EVAL ...")
model.eval()
with torch.no_grad():
total_acc = 0
for q, pos, neg in eval_loader:
results = model(q, pos, neg)
# print(results)
# exit()
tot_cr = model.num_correct(*results)
total_acc += tot_cr
print("EVALUATION, Acc: %10.6f"%(total_acc / len(eval_set)))
def save(name):
os.makedirs(log_dir, exist_ok=True)
model.question_encoder.save_pretrained(os.path.join(log_dir, name, "query_encoder"))
model.reference_encoder.save_pretrained(os.path.join(log_dir, name, "reference_encoder"))
def train(max_epoch = 10, eval_step = 200, save_step = 400, print_step = 50):
step = 0
for epoch in range(0, max_epoch):
print("EPOCH %d"%epoch)
for q, pos, neg in train_loader:
model.train()
step += 1
opt.zero_grad()
results = model(q, pos, neg)
loss = model.loss(*results)
if step % print_step == 0:
print("Step %4d, Loss, Acc: %10.6f, %10.6f"%(step, loss, model.acc(*results)))
loss.backward()
opt.step()
scheduler.step()
model.zero_grad()
if step % eval_step == 0:
eval()
pass
if step % save_step == 0:
save("step-%d"%(step))
save("step-%d-epoch-%d"%(step, epoch))
# eval()
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("--max_epoch", type=int, default=3)
args.add_argument("--eval_step", type=int, default=40)
args.add_argument("--save_step", type=int, default=40)
args.add_argument("--print_step", type=int, default=40)
args.add_argument("--device", type=str, default="cuda")
args.add_argument("--temp", type=float, default=0.05)
args.add_argument("--train_batch_size", type=int, default=64)
args.add_argument("--eval_batch_size", type=int, default=32)
args.add_argument("--lr", type=float, default=1e-6)
args.add_argument("--warmup", type=int, default=100)
args.add_argument("--total", type=int, default=1000)
args.add_argument("--ratio", type=float, default=0.0)
args.add_argument("--save_dir", type=str, default="./retriever_runs")
args.add_argument("--train_data_dir", type=str, required=True)
args = args.parse_args()
log_dir = os.path.join(args.save_dir, time.strftime("%Y%m%d-%H%M%S", time.localtime(time.time())))
train_set = load_from_disk(os.path.join(args.train_data_dir, "train"))
eval_set = load_from_disk(os.path.join(args.train_data_dir, "eval"))
tokenizer = AutoTokenizer.from_pretrained("facebook/contriever-msmarco")
train_loader = DataLoader(train_set, batch_size=args.train_batch_size, collate_fn=collate)
eval_loader = DataLoader(eval_set, batch_size=args.eval_batch_size, collate_fn=collate)
model = QuestionReferenceDensity()
model = model.to(args.device)
opt = AdamW(model.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.01)
scheduler_args = {
"warmup": args.warmup,
"total": args.total,
"ratio": args.ratio,
}
scheduler = WarmupLinearScheduler(opt, **scheduler_args)
temp = args.temp
train(max_epoch=args.max_epoch, eval_step=args.eval_step, save_step=args.save_step, print_step=args.print_step)