Skip to content

Commit d18408e

Browse files
committed
MNT: improve random number generator naming.
1 parent 26f692e commit d18408e

File tree

2 files changed

+25
-23
lines changed

2 files changed

+25
-23
lines changed

rocketpy/stochastic/stochastic_model.py

+9-7
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ def _set_stochastic(self, seed=None):
7878
seed : int, optional
7979
Seed for the random number generator.
8080
"""
81-
self.__rng_generator = np.random.default_rng(seed)
81+
self.__random_number_generator = np.random.default_rng(seed)
8282
self.last_rnd_dict = {}
8383

8484
# TODO: This code block is too complex. Refactor it.
@@ -181,7 +181,7 @@ def _validate_tuple_length_two(
181181
# is the standard deviation, and the second item is the distribution
182182
# function. In this case, the nominal value will be taken from the
183183
# object passed.
184-
dist_func = get_distribution(input_value[1], self.__rng_generator)
184+
dist_func = get_distribution(input_value[1], self.__random_number_generator)
185185
return (getattr(self.obj, input_name), input_value[0], dist_func)
186186
else:
187187
# if second item is an int or float, then it is assumed that the
@@ -191,7 +191,7 @@ def _validate_tuple_length_two(
191191
return (
192192
input_value[0],
193193
input_value[1],
194-
get_distribution("normal", self.__rng_generator),
194+
get_distribution("normal", self.__random_number_generator),
195195
)
196196

197197
def _validate_tuple_length_three(
@@ -228,7 +228,7 @@ def _validate_tuple_length_three(
228228
f"'{input_name}': Third item of tuple must be a string containing the "
229229
"name of a valid numpy.random distribution function."
230230
)
231-
dist_func = get_distribution(input_value[2], self.__rng_generator)
231+
dist_func = get_distribution(input_value[2], self.__random_number_generator)
232232
return (input_value[0], input_value[1], dist_func)
233233

234234
def _validate_list(
@@ -287,7 +287,7 @@ def _validate_scalar(
287287
return (
288288
getattr(self.obj, input_name),
289289
input_value,
290-
get_distribution("normal", self.__rng_generator),
290+
get_distribution("normal", self.__random_number_generator),
291291
)
292292

293293
def _validate_factors(self, input_name, input_value):
@@ -355,14 +355,16 @@ def _validate_tuple_factor(self, input_name, factor_tuple):
355355
return (
356356
factor_tuple[0],
357357
factor_tuple[1],
358-
get_distribution("normal", self.__rng_generator),
358+
get_distribution("normal", self.__random_number_generator),
359359
)
360360
elif len(factor_tuple) == 3:
361361
assert isinstance(factor_tuple[2], str), (
362362
f"'{input_name}`: Third item of tuple must be a string containing "
363363
"the name of a valid numpy.random distribution function"
364364
)
365-
dist_func = get_distribution(factor_tuple[2], self.__rng_generator)
365+
dist_func = get_distribution(
366+
factor_tuple[2], self.__random_number_generator
367+
)
366368
return (factor_tuple[0], factor_tuple[1], dist_func)
367369

368370
def _validate_list_factor(self, input_name, factor_list):

rocketpy/tools.py

+16-16
Original file line numberDiff line numberDiff line change
@@ -232,39 +232,39 @@ def bilinear_interpolation(x, y, x1, x2, y1, y2, z11, z12, z21, z22):
232232
) / ((x2 - x1) * (y2 - y1))
233233

234234

235-
def get_distribution(distribution_function_name, rng_generator=None):
235+
def get_distribution(distribution_function_name, random_number_generator=None):
236236
"""Sets the distribution function to be used in the monte carlo analysis.
237237
238238
Parameters
239239
----------
240240
distribution_function_name : string
241241
The type of distribution to be used in the analysis. It can be
242242
'uniform', 'normal', 'lognormal', etc.
243-
rng_generator : np.random.Generator, optional
243+
random_number_generator : np.random.Generator, optional
244244
The random number generator to be used. If None, the default generator
245-
is used.
245+
``numpy.random.default_rng`` is used.
246246
247247
Returns
248248
-------
249249
np.random distribution function
250250
The distribution function to be used in the analysis.
251251
"""
252-
if rng_generator is None:
253-
rng_generator = np.random.default_rng()
252+
if random_number_generator is None:
253+
random_number_generator = np.random.default_rng()
254254

255255
# Dictionary mapping distribution names to RNG methods
256256
distributions = {
257-
"normal": rng_generator.normal,
258-
"binomial": rng_generator.binomial,
259-
"chisquare": rng_generator.chisquare,
260-
"exponential": rng_generator.exponential,
261-
"gamma": rng_generator.gamma,
262-
"gumbel": rng_generator.gumbel,
263-
"laplace": rng_generator.laplace,
264-
"logistic": rng_generator.logistic,
265-
"poisson": rng_generator.poisson,
266-
"uniform": rng_generator.uniform,
267-
"wald": rng_generator.wald,
257+
"normal": random_number_generator.normal,
258+
"binomial": random_number_generator.binomial,
259+
"chisquare": random_number_generator.chisquare,
260+
"exponential": random_number_generator.exponential,
261+
"gamma": random_number_generator.gamma,
262+
"gumbel": random_number_generator.gumbel,
263+
"laplace": random_number_generator.laplace,
264+
"logistic": random_number_generator.logistic,
265+
"poisson": random_number_generator.poisson,
266+
"uniform": random_number_generator.uniform,
267+
"wald": random_number_generator.wald,
268268
}
269269
try:
270270
return distributions[distribution_function_name]

0 commit comments

Comments
 (0)