-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
206 lines (184 loc) · 7.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import random
import os
import numpy as np
import torch
import scanpy as sc
import pandas as pd
from scipy import stats
import scipy.stats as st
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import os
def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def cal_ssim(im1,im2,M):
assert len(im1.shape) == 2 and len(im2.shape) == 2
assert im1.shape == im2.shape
mu1 = im1.mean()
mu2 = im2.mean()
sigma1 = np.sqrt(((im1 - mu1) ** 2).mean())
sigma2 = np.sqrt(((im2 - mu2) ** 2).mean())
sigma12 = ((im1 - mu1) * (im2 - mu2)).mean()
k1, k2, L = 0.01, 0.03, M
C1 = (k1*L) ** 2
C2 = (k2*L) ** 2
C3 = C2/2
l12 = (2*mu1*mu2 + C1)/(mu1 ** 2 + mu2 ** 2 + C1)
c12 = (2*sigma1*sigma2 + C2)/(sigma1 ** 2 + sigma2 ** 2 + C2)
s12 = (sigma12 + C3)/(sigma1*sigma2 + C3)
ssim = l12 * c12 * s12
return ssim
def scale_max(df):
result = pd.DataFrame()
for label, content in df.items():
content = content/content.max()
result = pd.concat([result, content],axis=1)
return result
def scale_z_score(df):
result = pd.DataFrame()
for label, content in df.items():
content = st.zscore(content)
content = pd.DataFrame(content,columns=[label])
result = pd.concat([result, content],axis=1)
return result
def scale_plus(df):
result = pd.DataFrame()
for label, content in df.items():
content = content/content.sum()
result = pd.concat([result,content],axis=1)
return result
def logNorm(df):
df = np.log1p(df)
df = st.zscore(df)
return df
class CalculateMeteics:
def __init__(self, raw_count, impute_count, prefix, metric, name, read_file=False):
self.raw_count = raw_count
self.impute_count = impute_count
self.impute_count.index = list(self.raw_count.index)
self.prefix = prefix
self.metric = metric
self.name = name
def SSIM(self, raw, impute, scale = 'scale_max'):
if scale == 'scale_max': # large time consumer
raw = scale_max(raw)
impute = scale_max(impute)
else:
print ('Please note you do not scale data by scale max')
# print(raw.shape, impute.shape) # (92614, 1890)
if raw.shape[0] == impute.shape[0]:
result = pd.DataFrame()
for label in raw.columns:
if label not in impute.columns:
ssim = 0
else:
raw_col = raw.loc[:,label] # return 'label' column
impute_col = impute.loc[:,label]
impute_col = impute_col.fillna(1e-20)
raw_col = raw_col.fillna(1e-20)
M = [raw_col.max(),impute_col.max()][raw_col.max()>impute_col.max()]
raw_col_2 = np.array(raw_col)
raw_col_2 = raw_col_2.reshape(raw_col_2.shape[0],1)
impute_col_2 = np.array(impute_col)
impute_col_2 = impute_col_2.reshape(impute_col_2.shape[0],1)
ssim = cal_ssim(raw_col_2,impute_col_2,M)
ssim_df = pd.DataFrame(ssim, index=["SSIM"],columns=[label])
result = pd.concat([result, ssim_df],axis=1)
else:
print("columns error")
return result
def PCC(self, raw, impute, scale = None):
if raw.shape[0] == impute.shape[0]:
result = pd.DataFrame()
for label in raw.columns:
if label not in impute.columns:
pearsonr = 0
else:
raw_col = raw.loc[:,label]
impute_col = impute.loc[:,label]
impute_col = impute_col.fillna(1e-20)
raw_col = raw_col.fillna(1e-20)
try:
pearsonr, _ = st.pearsonr(raw_col,impute_col)
except:
pearsonr = 0
pearson_df = pd.DataFrame(pearsonr, index=["PCC"],columns=[label])
result = pd.concat([result, pearson_df],axis=1)
else:
print("columns error")
return result
def JS(self, raw, impute, scale = 'scale_plus'):
if scale == 'scale_plus':
raw = scale_plus(np.expm1(raw))
impute = scale_plus(np.expm1(impute))
else:
print ('Please note you do not scale data by plus')
if raw.shape[0] == impute.shape[0]:
result = pd.DataFrame()
for label in raw.columns:
if label not in impute.columns:
JS = 1
else:
raw_col = raw.loc[:,label]
impute_col = impute.loc[:,label]
raw_col = raw_col.fillna(1e-20)
impute_col = impute_col.fillna(1e-20)
M = (raw_col.to_numpy() + impute_col.to_numpy())/2
t1 = st.entropy(raw_col, M)
t2 = st.entropy(impute_col, M)
JS = (t1 + t2) / 2
JS_df = pd.DataFrame(JS, index=["JS"],columns=[label])
result = pd.concat([result, JS_df],axis=1)
else:
print("columns error")
return result
def RMSE(self, raw, impute, scale = 'zscore'):
if scale == 'zscore':
raw = scale_z_score(raw)
impute = scale_z_score(impute)
else:
print ('Please note you do not scale data by zscore')
if raw.shape[0] == impute.shape[0]:
result = pd.DataFrame()
for label in raw.columns:
if label not in impute.columns:
RMSE = 1.5
else:
raw_col = raw.loc[:,label]
impute_col = impute.loc[:,label]
impute_col = impute_col.fillna(1e-20)
raw_col = raw_col.fillna(1e-20)
RMSE = np.sqrt(((raw_col - impute_col) ** 2).mean())
RMSE_df = pd.DataFrame(RMSE, index=["RMSE"],columns=[label])
result = pd.concat([result, RMSE_df],axis=1)
else:
print("columns error")
return result
def compute_all(self, K='none'):
raw = self.raw_count
impute = self.impute_count
impute[impute < 0] = 0
# print(impute.index)
# print(raw.index)
prefix = self.prefix
SSIM = self.SSIM(raw,impute)
Pearson = self.PCC(raw, impute)
JS = self.JS(raw, impute)
RMSE = self.RMSE(raw, impute)
result_all = pd.concat([Pearson, SSIM, RMSE, JS],axis=0)
if K == 'none':
save_path = os.path.join(prefix, self.name+"_Metrics.txt")
else:
save_path = os.path.join(prefix, self.name+"_Metrics_%d.txt"%(K))
print(save_path)
result_all.T.to_csv(save_path, sep='\t', header = 1, index = 1)
self.accuracy = result_all
return result_all