-
Notifications
You must be signed in to change notification settings - Fork 286
/
Copy pathutils.py
1072 lines (888 loc) · 35.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import ast
import collections
import copy
import importlib
import itertools
import json
import logging
import os
import sys
import time
from argparse import Namespace
from bisect import bisect
from contextlib import contextmanager
from dataclasses import dataclass
from functools import wraps
from itertools import product
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Mapping, Optional
import numpy as np
import torch
import torch.nn as nn
import torch_geometric
import yaml
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from torch_geometric.data import Data
from torch_geometric.utils import remove_self_loops
from torch_scatter import scatter, segment_coo, segment_csr
if TYPE_CHECKING:
from torch.nn.modules.module import _IncompatibleKeys
def pyg2_data_transform(data: Data):
"""
if we're on the new pyg (2.0 or later) and if the Data stored is in older format
we need to convert the data to the new format
"""
if torch_geometric.__version__ >= "2.0" and "_store" not in data.__dict__:
return Data(
**{k: v for k, v in data.__dict__.items() if v is not None}
)
return data
def save_checkpoint(
state, checkpoint_dir="checkpoints/", checkpoint_file="checkpoint.pt"
):
filename = os.path.join(checkpoint_dir, checkpoint_file)
torch.save(state, filename)
return filename
class Complete(object):
def __call__(self, data):
device = data.edge_index.device
row = torch.arange(data.num_nodes, dtype=torch.long, device=device)
col = torch.arange(data.num_nodes, dtype=torch.long, device=device)
row = row.view(-1, 1).repeat(1, data.num_nodes).view(-1)
col = col.repeat(data.num_nodes)
edge_index = torch.stack([row, col], dim=0)
edge_attr = None
if data.edge_attr is not None:
idx = data.edge_index[0] * data.num_nodes + data.edge_index[1]
size = list(data.edge_attr.size())
size[0] = data.num_nodes * data.num_nodes
edge_attr = data.edge_attr.new_zeros(size)
edge_attr[idx] = data.edge_attr
edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
data.edge_attr = edge_attr
data.edge_index = edge_index
return data
def warmup_lr_lambda(current_step, optim_config):
"""Returns a learning rate multiplier.
Till `warmup_steps`, learning rate linearly increases to `initial_lr`,
and then gets multiplied by `lr_gamma` every time a milestone is crossed.
"""
# keep this block for older configs that have warmup_epochs instead of warmup_steps
# and lr_milestones are defined in epochs
if (
any(x < 100 for x in optim_config["lr_milestones"])
or "warmup_epochs" in optim_config
):
raise Exception(
"ConfigError: please define lr_milestones in steps not epochs and define warmup_steps instead of warmup_epochs"
)
if current_step <= optim_config["warmup_steps"]:
alpha = current_step / float(optim_config["warmup_steps"])
return optim_config["warmup_factor"] * (1.0 - alpha) + alpha
else:
idx = bisect(optim_config["lr_milestones"], current_step)
return pow(optim_config["lr_gamma"], idx)
def print_cuda_usage():
print("Memory Allocated:", torch.cuda.memory_allocated() / (1024 * 1024))
print(
"Max Memory Allocated:",
torch.cuda.max_memory_allocated() / (1024 * 1024),
)
print("Memory Cached:", torch.cuda.memory_cached() / (1024 * 1024))
print("Max Memory Cached:", torch.cuda.max_memory_cached() / (1024 * 1024))
def conditional_grad(dec):
"Decorator to enable/disable grad depending on whether force/energy predictions are being made"
# Adapted from https://stackoverflow.com/questions/60907323/accessing-class-property-as-decorator-argument
def decorator(func):
@wraps(func)
def cls_method(self, *args, **kwargs):
f = func
if self.regress_forces and not getattr(self, "direct_forces", 0):
f = dec(func)
return f(self, *args, **kwargs)
return cls_method
return decorator
def plot_histogram(data, xlabel="", ylabel="", title=""):
assert isinstance(data, list)
# Preset
fig = Figure(figsize=(5, 4), dpi=150)
canvas = FigureCanvas(fig)
ax = fig.gca()
# Plot
ax.hist(data, bins=20, rwidth=0.9, zorder=3)
# Axes
ax.grid(color="0.95", zorder=0)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_title(title)
fig.tight_layout(pad=2)
# Return numpy array
canvas.draw()
image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image_from_plot = image_from_plot.reshape(
fig.canvas.get_width_height()[::-1] + (3,)
)
return image_from_plot
# Override the collation method in `pytorch_geometric.data.InMemoryDataset`
def collate(data_list):
keys = data_list[0].keys
data = data_list[0].__class__()
for key in keys:
data[key] = []
slices = {key: [0] for key in keys}
for item, key in product(data_list, keys):
data[key].append(item[key])
if torch.is_tensor(item[key]):
s = slices[key][-1] + item[key].size(
item.__cat_dim__(key, item[key])
)
elif isinstance(item[key], int) or isinstance(item[key], float):
s = slices[key][-1] + 1
else:
raise ValueError("Unsupported attribute type")
slices[key].append(s)
if hasattr(data_list[0], "__num_nodes__"):
data.__num_nodes__ = []
for item in data_list:
data.__num_nodes__.append(item.num_nodes)
for key in keys:
if torch.is_tensor(data_list[0][key]):
data[key] = torch.cat(
data[key], dim=data.__cat_dim__(key, data_list[0][key])
)
else:
data[key] = torch.tensor(data[key])
slices[key] = torch.tensor(slices[key], dtype=torch.long)
return data, slices
def add_edge_distance_to_graph(
batch,
device="cpu",
dmin=0.0,
dmax=6.0,
num_gaussians=50,
):
# Make sure x has positions.
if not all(batch.pos[0][:] == batch.x[0][-3:]):
batch.x = torch.cat([batch.x, batch.pos.float()], dim=1)
# First set computations to be tracked for positions.
batch.x = batch.x.requires_grad_(True)
# Then compute Euclidean distance between edge endpoints.
pdist = torch.nn.PairwiseDistance(p=2.0)
distances = pdist(
batch.x[batch.edge_index[0]][:, -3:],
batch.x[batch.edge_index[1]][:, -3:],
)
# Expand it using a gaussian basis filter.
gdf_filter = torch.linspace(dmin, dmax, num_gaussians)
var = gdf_filter[1] - gdf_filter[0]
gdf_filter, var = gdf_filter.to(device), var.to(device)
gdf_distances = torch.exp(
-((distances.view(-1, 1) - gdf_filter) ** 2) / var**2
)
# Reassign edge attributes.
batch.edge_weight = distances
batch.edge_attr = gdf_distances.float()
return batch
def _import_local_file(path: Path, *, project_root: Path):
"""
Imports a Python file as a module
:param path: The path to the file to import
:type path: Path
:param project_root: The root directory of the project (i.e., the "ocp" folder)
:type project_root: Path
"""
path = path.resolve()
project_root = project_root.resolve()
module_name = ".".join(
path.absolute()
.relative_to(project_root.absolute())
.with_suffix("")
.parts
)
logging.debug(f"Resolved module name of {path} to {module_name}")
importlib.import_module(module_name)
def setup_experimental_imports(project_root: Path):
experimental_folder = (project_root / "experimental").resolve()
if not experimental_folder.exists() or not experimental_folder.is_dir():
return
experimental_files = [
f.resolve().absolute() for f in experimental_folder.rglob("*.py")
]
# Ignore certain directories within experimental
ignore_file = experimental_folder / ".ignore"
if ignore_file.exists():
with open(ignore_file, "r") as f:
for line in f.read().splitlines():
for ignored_file in (experimental_folder / line).rglob("*.py"):
experimental_files.remove(
ignored_file.resolve().absolute()
)
for f in experimental_files:
_import_local_file(f, project_root=project_root)
def _get_project_root():
"""
Gets the root folder of the project (the "ocp" folder)
:return: The absolute path to the project root.
"""
from ocpmodels.common.registry import registry
# Automatically load all of the modules, so that
# they register with registry
root_folder = registry.get("ocpmodels_root", no_warning=True)
if root_folder is not None:
assert isinstance(root_folder, str), "ocpmodels_root must be a string"
root_folder = Path(root_folder).resolve().absolute()
assert root_folder.exists(), f"{root_folder} does not exist"
assert root_folder.is_dir(), f"{root_folder} is not a directory"
else:
root_folder = Path(__file__).resolve().absolute().parent.parent
# root_folder is the "ocpmodes" folder, so we need to go up one more level
return root_folder.parent
# Copied from https://github.com/facebookresearch/mmf/blob/master/mmf/utils/env.py#L89.
def setup_imports(config: Optional[dict] = None):
from ocpmodels.common.registry import registry
skip_experimental_imports = (config or {}).get(
"skip_experimental_imports", None
)
# First, check if imports are already setup
has_already_setup = registry.get("imports_setup", no_warning=True)
if has_already_setup:
return
try:
project_root = _get_project_root()
logging.info(f"Project root: {project_root}")
importlib.import_module("ocpmodels.common.logger")
import_keys = ["trainers", "datasets", "models", "tasks"]
for key in import_keys:
for f in (project_root / "ocpmodels" / key).rglob("*.py"):
_import_local_file(f, project_root=project_root)
if not skip_experimental_imports:
setup_experimental_imports(project_root)
finally:
registry.register("imports_setup", True)
def dict_set_recursively(dictionary, key_sequence, val):
top_key = key_sequence.pop(0)
if len(key_sequence) == 0:
dictionary[top_key] = val
else:
if top_key not in dictionary:
dictionary[top_key] = {}
dict_set_recursively(dictionary[top_key], key_sequence, val)
def parse_value(value):
"""
Parse string as Python literal if possible and fallback to string.
"""
try:
return ast.literal_eval(value)
except (ValueError, SyntaxError):
# Use as string if nothing else worked
return value
def create_dict_from_args(args: list, sep: str = "."):
"""
Create a (nested) dictionary from console arguments.
Keys in different dictionary levels are separated by sep.
"""
return_dict = {}
for arg in args:
arg = arg.strip("--")
keys_concat, val = arg.split("=")
val = parse_value(val)
key_sequence = keys_concat.split(sep)
dict_set_recursively(return_dict, key_sequence, val)
return return_dict
def load_config(path: str, previous_includes: list = []):
path = Path(path)
if path in previous_includes:
raise ValueError(
f"Cyclic config include detected. {path} included in sequence {previous_includes}."
)
previous_includes = previous_includes + [path]
direct_config = yaml.safe_load(open(path, "r"))
# Load config from included files.
if "includes" in direct_config:
includes = direct_config.pop("includes")
else:
includes = []
if not isinstance(includes, list):
raise AttributeError(
"Includes must be a list, '{}' provided".format(type(includes))
)
config = {}
duplicates_warning = []
duplicates_error = []
for include in includes:
include_config, inc_dup_warning, inc_dup_error = load_config(
include, previous_includes
)
duplicates_warning += inc_dup_warning
duplicates_error += inc_dup_error
# Duplicates between includes causes an error
config, merge_dup_error = merge_dicts(config, include_config)
duplicates_error += merge_dup_error
# Duplicates between included and main file causes warnings
config, merge_dup_warning = merge_dicts(config, direct_config)
duplicates_warning += merge_dup_warning
return config, duplicates_warning, duplicates_error
def build_config(args, args_override):
config, duplicates_warning, duplicates_error = load_config(args.config_yml)
if len(duplicates_warning) > 0:
logging.warning(
f"Overwritten config parameters from included configs "
f"(non-included parameters take precedence): {duplicates_warning}"
)
if len(duplicates_error) > 0:
raise ValueError(
f"Conflicting (duplicate) parameters in simultaneously "
f"included configs: {duplicates_error}"
)
# Check for overridden parameters.
if args_override != []:
overrides = create_dict_from_args(args_override)
config, _ = merge_dicts(config, overrides)
# Some other flags.
config["mode"] = args.mode
config["identifier"] = args.identifier
config["timestamp_id"] = args.timestamp_id
config["seed"] = args.seed
config["is_debug"] = args.debug
config["run_dir"] = args.run_dir
config["print_every"] = args.print_every
config["amp"] = args.amp
config["checkpoint"] = args.checkpoint
config["cpu"] = args.cpu
# Submit
config["submit"] = args.submit
config["summit"] = args.summit
# Distributed
config["local_rank"] = args.local_rank
config["distributed_port"] = args.distributed_port
config["world_size"] = args.num_nodes * args.num_gpus
config["distributed_backend"] = args.distributed_backend
config["noddp"] = args.no_ddp
config["gp_gpus"] = args.gp_gpus
return config
def create_grid(base_config, sweep_file):
def _flatten_sweeps(sweeps, root_key="", sep="."):
flat_sweeps = []
for key, value in sweeps.items():
new_key = root_key + sep + key if root_key else key
if isinstance(value, collections.MutableMapping):
flat_sweeps.extend(_flatten_sweeps(value, new_key).items())
else:
flat_sweeps.append((new_key, value))
return collections.OrderedDict(flat_sweeps)
def _update_config(config, keys, override_vals, sep="."):
for key, value in zip(keys, override_vals):
key_path = key.split(sep)
child_config = config
for name in key_path[:-1]:
child_config = child_config[name]
child_config[key_path[-1]] = value
return config
sweeps = yaml.safe_load(open(sweep_file, "r"))
flat_sweeps = _flatten_sweeps(sweeps)
keys = list(flat_sweeps.keys())
values = list(itertools.product(*flat_sweeps.values()))
configs = []
for i, override_vals in enumerate(values):
config = copy.deepcopy(base_config)
config = _update_config(config, keys, override_vals)
config["identifier"] = config["identifier"] + f"_run{i}"
configs.append(config)
return configs
def save_experiment_log(args, jobs, configs):
log_file = args.logdir / "exp" / time.strftime("%Y-%m-%d-%I-%M-%S%p.log")
log_file.parent.mkdir(exist_ok=True, parents=True)
with open(log_file, "w") as f:
for job, config in zip(jobs, configs):
print(
json.dumps(
{
"config": config,
"slurm_id": job.job_id,
"timestamp": time.strftime("%I:%M:%S%p %Z %b %d, %Y"),
}
),
file=f,
)
return log_file
def get_pbc_distances(
pos,
edge_index,
cell,
cell_offsets,
neighbors,
return_offsets=False,
return_distance_vec=False,
):
row, col = edge_index
distance_vectors = pos[row] - pos[col]
# correct for pbc
neighbors = neighbors.to(cell.device)
cell = torch.repeat_interleave(cell, neighbors, dim=0)
offsets = cell_offsets.float().view(-1, 1, 3).bmm(cell.float()).view(-1, 3)
distance_vectors += offsets
# compute distances
distances = distance_vectors.norm(dim=-1)
# redundancy: remove zero distances
nonzero_idx = torch.arange(len(distances), device=distances.device)[
distances != 0
]
edge_index = edge_index[:, nonzero_idx]
distances = distances[nonzero_idx]
out = {
"edge_index": edge_index,
"distances": distances,
}
if return_distance_vec:
out["distance_vec"] = distance_vectors[nonzero_idx]
if return_offsets:
out["offsets"] = offsets[nonzero_idx]
return out
def radius_graph_pbc(
data, radius, max_num_neighbors_threshold, pbc=[True, True, True]
):
device = data.pos.device
batch_size = len(data.natoms)
if hasattr(data, "pbc"):
data.pbc = torch.atleast_2d(data.pbc)
for i in range(3):
if not torch.any(data.pbc[:, i]).item():
pbc[i] = False
elif torch.all(data.pbc[:, i]).item():
pbc[i] = True
else:
raise RuntimeError(
"Different structures in the batch have different PBC configurations. This is not currently supported."
)
# position of the atoms
atom_pos = data.pos
# Before computing the pairwise distances between atoms, first create a list of atom indices to compare for the entire batch
num_atoms_per_image = data.natoms
num_atoms_per_image_sqr = (num_atoms_per_image**2).long()
# index offset between images
index_offset = (
torch.cumsum(num_atoms_per_image, dim=0) - num_atoms_per_image
)
index_offset_expand = torch.repeat_interleave(
index_offset, num_atoms_per_image_sqr
)
num_atoms_per_image_expand = torch.repeat_interleave(
num_atoms_per_image, num_atoms_per_image_sqr
)
# Compute a tensor containing sequences of numbers that range from 0 to num_atoms_per_image_sqr for each image
# that is used to compute indices for the pairs of atoms. This is a very convoluted way to implement
# the following (but 10x faster since it removes the for loop)
# for batch_idx in range(batch_size):
# batch_count = torch.cat([batch_count, torch.arange(num_atoms_per_image_sqr[batch_idx], device=device)], dim=0)
num_atom_pairs = torch.sum(num_atoms_per_image_sqr)
index_sqr_offset = (
torch.cumsum(num_atoms_per_image_sqr, dim=0) - num_atoms_per_image_sqr
)
index_sqr_offset = torch.repeat_interleave(
index_sqr_offset, num_atoms_per_image_sqr
)
atom_count_sqr = (
torch.arange(num_atom_pairs, device=device) - index_sqr_offset
)
# Compute the indices for the pairs of atoms (using division and mod)
# If the systems get too large this apporach could run into numerical precision issues
index1 = (
torch.div(
atom_count_sqr, num_atoms_per_image_expand, rounding_mode="floor"
)
) + index_offset_expand
index2 = (
atom_count_sqr % num_atoms_per_image_expand
) + index_offset_expand
# Get the positions for each atom
pos1 = torch.index_select(atom_pos, 0, index1)
pos2 = torch.index_select(atom_pos, 0, index2)
# Calculate required number of unit cells in each direction.
# Smallest distance between planes separated by a1 is
# 1 / ||(a2 x a3) / V||_2, since a2 x a3 is the area of the plane.
# Note that the unit cell volume V = a1 * (a2 x a3) and that
# (a2 x a3) / V is also the reciprocal primitive vector
# (crystallographer's definition).
cross_a2a3 = torch.cross(data.cell[:, 1], data.cell[:, 2], dim=-1)
cell_vol = torch.sum(data.cell[:, 0] * cross_a2a3, dim=-1, keepdim=True)
if pbc[0]:
inv_min_dist_a1 = torch.norm(cross_a2a3 / cell_vol, p=2, dim=-1)
rep_a1 = torch.ceil(radius * inv_min_dist_a1)
else:
rep_a1 = data.cell.new_zeros(1)
if pbc[1]:
cross_a3a1 = torch.cross(data.cell[:, 2], data.cell[:, 0], dim=-1)
inv_min_dist_a2 = torch.norm(cross_a3a1 / cell_vol, p=2, dim=-1)
rep_a2 = torch.ceil(radius * inv_min_dist_a2)
else:
rep_a2 = data.cell.new_zeros(1)
if pbc[2]:
cross_a1a2 = torch.cross(data.cell[:, 0], data.cell[:, 1], dim=-1)
inv_min_dist_a3 = torch.norm(cross_a1a2 / cell_vol, p=2, dim=-1)
rep_a3 = torch.ceil(radius * inv_min_dist_a3)
else:
rep_a3 = data.cell.new_zeros(1)
# Take the max over all images for uniformity. This is essentially padding.
# Note that this can significantly increase the number of computed distances
# if the required repetitions are very different between images
# (which they usually are). Changing this to sparse (scatter) operations
# might be worth the effort if this function becomes a bottleneck.
max_rep = [rep_a1.max(), rep_a2.max(), rep_a3.max()]
# Tensor of unit cells
cells_per_dim = [
torch.arange(-rep, rep + 1, device=device, dtype=torch.float)
for rep in max_rep
]
unit_cell = torch.cartesian_prod(*cells_per_dim)
num_cells = len(unit_cell)
unit_cell_per_atom = unit_cell.view(1, num_cells, 3).repeat(
len(index2), 1, 1
)
unit_cell = torch.transpose(unit_cell, 0, 1)
unit_cell_batch = unit_cell.view(1, 3, num_cells).expand(
batch_size, -1, -1
)
# Compute the x, y, z positional offsets for each cell in each image
data_cell = torch.transpose(data.cell, 1, 2)
pbc_offsets = torch.bmm(data_cell, unit_cell_batch)
pbc_offsets_per_atom = torch.repeat_interleave(
pbc_offsets, num_atoms_per_image_sqr, dim=0
)
# Expand the positions and indices for the 9 cells
pos1 = pos1.view(-1, 3, 1).expand(-1, -1, num_cells)
pos2 = pos2.view(-1, 3, 1).expand(-1, -1, num_cells)
index1 = index1.view(-1, 1).repeat(1, num_cells).view(-1)
index2 = index2.view(-1, 1).repeat(1, num_cells).view(-1)
# Add the PBC offsets for the second atom
pos2 = pos2 + pbc_offsets_per_atom
# Compute the squared distance between atoms
atom_distance_sqr = torch.sum((pos1 - pos2) ** 2, dim=1)
atom_distance_sqr = atom_distance_sqr.view(-1)
# Remove pairs that are too far apart
mask_within_radius = torch.le(atom_distance_sqr, radius * radius)
# Remove pairs with the same atoms (distance = 0.0)
mask_not_same = torch.gt(atom_distance_sqr, 0.0001)
mask = torch.logical_and(mask_within_radius, mask_not_same)
index1 = torch.masked_select(index1, mask)
index2 = torch.masked_select(index2, mask)
unit_cell = torch.masked_select(
unit_cell_per_atom.view(-1, 3), mask.view(-1, 1).expand(-1, 3)
)
unit_cell = unit_cell.view(-1, 3)
atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask)
mask_num_neighbors, num_neighbors_image = get_max_neighbors_mask(
natoms=data.natoms,
index=index1,
atom_distance=atom_distance_sqr,
max_num_neighbors_threshold=max_num_neighbors_threshold,
)
if not torch.all(mask_num_neighbors):
# Mask out the atoms to ensure each atom has at most max_num_neighbors_threshold neighbors
index1 = torch.masked_select(index1, mask_num_neighbors)
index2 = torch.masked_select(index2, mask_num_neighbors)
unit_cell = torch.masked_select(
unit_cell.view(-1, 3), mask_num_neighbors.view(-1, 1).expand(-1, 3)
)
unit_cell = unit_cell.view(-1, 3)
edge_index = torch.stack((index2, index1))
return edge_index, unit_cell, num_neighbors_image
def get_max_neighbors_mask(
natoms, index, atom_distance, max_num_neighbors_threshold
):
"""
Give a mask that filters out edges so that each atom has at most
`max_num_neighbors_threshold` neighbors.
Assumes that `index` is sorted.
"""
device = natoms.device
num_atoms = natoms.sum()
# Get number of neighbors
# segment_coo assumes sorted index
ones = index.new_ones(1).expand_as(index)
num_neighbors = segment_coo(ones, index, dim_size=num_atoms)
max_num_neighbors = num_neighbors.max()
num_neighbors_thresholded = num_neighbors.clamp(
max=max_num_neighbors_threshold
)
# Get number of (thresholded) neighbors per image
image_indptr = torch.zeros(
natoms.shape[0] + 1, device=device, dtype=torch.long
)
image_indptr[1:] = torch.cumsum(natoms, dim=0)
num_neighbors_image = segment_csr(num_neighbors_thresholded, image_indptr)
# If max_num_neighbors is below the threshold, return early
if (
max_num_neighbors <= max_num_neighbors_threshold
or max_num_neighbors_threshold <= 0
):
mask_num_neighbors = torch.tensor(
[True], dtype=bool, device=device
).expand_as(index)
return mask_num_neighbors, num_neighbors_image
# Create a tensor of size [num_atoms, max_num_neighbors] to sort the distances of the neighbors.
# Fill with infinity so we can easily remove unused distances later.
distance_sort = torch.full(
[num_atoms * max_num_neighbors], np.inf, device=device
)
# Create an index map to map distances from atom_distance to distance_sort
# index_sort_map assumes index to be sorted
index_neighbor_offset = torch.cumsum(num_neighbors, dim=0) - num_neighbors
index_neighbor_offset_expand = torch.repeat_interleave(
index_neighbor_offset, num_neighbors
)
index_sort_map = (
index * max_num_neighbors
+ torch.arange(len(index), device=device)
- index_neighbor_offset_expand
)
distance_sort.index_copy_(0, index_sort_map, atom_distance)
distance_sort = distance_sort.view(num_atoms, max_num_neighbors)
# Sort neighboring atoms based on distance
distance_sort, index_sort = torch.sort(distance_sort, dim=1)
# Select the max_num_neighbors_threshold neighbors that are closest
distance_sort = distance_sort[:, :max_num_neighbors_threshold]
index_sort = index_sort[:, :max_num_neighbors_threshold]
# Offset index_sort so that it indexes into index
index_sort = index_sort + index_neighbor_offset.view(-1, 1).expand(
-1, max_num_neighbors_threshold
)
# Remove "unused pairs" with infinite distances
mask_finite = torch.isfinite(distance_sort)
index_sort = torch.masked_select(index_sort, mask_finite)
# At this point index_sort contains the index into index of the
# closest max_num_neighbors_threshold neighbors per atom
# Create a mask to remove all pairs not in index_sort
mask_num_neighbors = torch.zeros(len(index), device=device, dtype=bool)
mask_num_neighbors.index_fill_(0, index_sort, True)
return mask_num_neighbors, num_neighbors_image
def get_pruned_edge_idx(edge_index, num_atoms=None, max_neigh=1e9):
assert num_atoms is not None
# removes neighbors > max_neigh
# assumes neighbors are sorted in increasing distance
_nonmax_idx = []
for i in range(num_atoms):
idx_i = torch.arange(len(edge_index[1]))[(edge_index[1] == i)][
:max_neigh
]
_nonmax_idx.append(idx_i)
_nonmax_idx = torch.cat(_nonmax_idx)
return _nonmax_idx
def merge_dicts(dict1: dict, dict2: dict):
"""Recursively merge two dictionaries.
Values in dict2 override values in dict1. If dict1 and dict2 contain a dictionary as a
value, this will call itself recursively to merge these dictionaries.
This does not modify the input dictionaries (creates an internal copy).
Additionally returns a list of detected duplicates.
Adapted from https://github.com/TUM-DAML/seml/blob/master/seml/utils.py
Parameters
----------
dict1: dict
First dict.
dict2: dict
Second dict. Values in dict2 will override values from dict1 in case they share the same key.
Returns
-------
return_dict: dict
Merged dictionaries.
"""
if not isinstance(dict1, dict):
raise ValueError(f"Expecting dict1 to be dict, found {type(dict1)}.")
if not isinstance(dict2, dict):
raise ValueError(f"Expecting dict2 to be dict, found {type(dict2)}.")
return_dict = copy.deepcopy(dict1)
duplicates = []
for k, v in dict2.items():
if k not in dict1:
return_dict[k] = v
else:
if isinstance(v, dict) and isinstance(dict1[k], dict):
return_dict[k], duplicates_k = merge_dicts(dict1[k], dict2[k])
duplicates += [f"{k}.{dup}" for dup in duplicates_k]
else:
return_dict[k] = dict2[k]
duplicates.append(k)
return return_dict, duplicates
class SeverityLevelBetween(logging.Filter):
def __init__(self, min_level, max_level):
super().__init__()
self.min_level = min_level
self.max_level = max_level
def filter(self, record):
return self.min_level <= record.levelno < self.max_level
def setup_logging():
root = logging.getLogger()
# Perform setup only if logging has not been configured
if not root.hasHandlers():
root.setLevel(logging.INFO)
log_formatter = logging.Formatter(
"%(asctime)s (%(levelname)s): %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Send INFO to stdout
handler_out = logging.StreamHandler(sys.stdout)
handler_out.addFilter(
SeverityLevelBetween(logging.INFO, logging.WARNING)
)
handler_out.setFormatter(log_formatter)
root.addHandler(handler_out)
# Send WARNING (and higher) to stderr
handler_err = logging.StreamHandler(sys.stderr)
handler_err.setLevel(logging.WARNING)
handler_err.setFormatter(log_formatter)
root.addHandler(handler_err)
def compute_neighbors(data, edge_index):
# Get number of neighbors
# segment_coo assumes sorted index
ones = edge_index[1].new_ones(1).expand_as(edge_index[1])
num_neighbors = segment_coo(
ones, edge_index[1], dim_size=data.natoms.sum()
)
# Get number of neighbors per image
image_indptr = torch.zeros(
data.natoms.shape[0] + 1, device=data.pos.device, dtype=torch.long
)
image_indptr[1:] = torch.cumsum(data.natoms, dim=0)
neighbors = segment_csr(num_neighbors, image_indptr)
return neighbors
def check_traj_files(batch, traj_dir):
if traj_dir is None:
return False
traj_dir = Path(traj_dir)
traj_files = [traj_dir / f"{id}.traj" for id in batch[0].sid.tolist()]
return all(fl.exists() for fl in traj_files)
@contextmanager
def new_trainer_context(*, config: Dict[str, Any], args: Namespace):
from ocpmodels.common import distutils, gp_utils
from ocpmodels.common.registry import registry
if TYPE_CHECKING:
from ocpmodels.tasks.task import BaseTask
from ocpmodels.trainers import BaseTrainer
@dataclass
class _TrainingContext:
config: Dict[str, Any]
task: "BaseTask"
trainer: "BaseTrainer"
setup_logging()
original_config = config
config = copy.deepcopy(original_config)
if args.distributed:
distutils.setup(config)
if config["gp_gpus"] is not None:
gp_utils.setup_gp(config)
try:
setup_imports(config)
trainer_cls = registry.get_trainer_class(
config.get("trainer", "energy")
)
assert trainer_cls is not None, "Trainer not found"
trainer = trainer_cls(
task=config["task"],
model=config["model"],
dataset=config["dataset"],
optimizer=config["optim"],
identifier=config["identifier"],
timestamp_id=config.get("timestamp_id", None),
run_dir=config.get("run_dir", "./"),
is_debug=config.get("is_debug", False),
print_every=config.get("print_every", 10),
seed=config.get("seed", 0),
logger=config.get("logger", "tensorboard"),
local_rank=config["local_rank"],
amp=config.get("amp", False),
cpu=config.get("cpu", False),
slurm=config.get("slurm", {}),
noddp=config.get("noddp", False),
)
task_cls = registry.get_task_class(config["mode"])
assert task_cls is not None, "Task not found"
task = task_cls(config)
start_time = time.time()
ctx = _TrainingContext(
config=original_config, task=task, trainer=trainer
)
yield ctx
distutils.synchronize()
if distutils.is_master():
logging.info(f"Total time taken: {time.time() - start_time}")
finally:
if args.distributed:
distutils.cleanup()
def _resolve_scale_factor_submodule(model: nn.Module, name: str):
from ocpmodels.modules.scaling.scale_factor import ScaleFactor
try:
scale = model.get_submodule(name)
if not isinstance(scale, ScaleFactor):
return None
return scale
except AttributeError:
return None
def _report_incompat_keys(
model: nn.Module,
keys: "_IncompatibleKeys",
strict: bool = False,