-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathonline_runner.py
232 lines (200 loc) · 8.16 KB
/
online_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import time
import numpy as np
from mmcv.runner import EpochBasedRunner, get_host_info
from online_src.domain_indicator_orchestrator import DomainIndicator
class OnlineRunner(EpochBasedRunner):
def __init__(
self,
model,
batch_processor=None,
optimizer=None,
work_dir=None,
logger=None,
meta=None,
max_iters=None,
max_epochs=None,
source_dataloader=None,
samples_per_gpu=None,
domain_indicator_args=None,
cfg_lr=None,
mode_train=True,
):
super().__init__(
model,
batch_processor,
optimizer,
work_dir,
logger,
meta,
max_iters,
max_epochs,
)
self.source_dataloader = source_dataloader
self.source_iterator = iter(self.source_dataloader)
self.time_elapsed = []
self.samples_per_gpu = samples_per_gpu
self.domain_change = "static.decode_1.loss_seg"
self.domain_indicator = DomainIndicator(**domain_indicator_args, **cfg_lr)
self.initial_lr = cfg_lr["initial_lr"]
self.policy_lr = cfg_lr["policy_lr"]
self.max_lr = cfg_lr["max_lr"]
self.lr_far_domain = cfg_lr["lr_far_domain"]
self.mode_train = mode_train
def next_source(self):
try:
source_sample = next(self.source_iterator)
except StopIteration:
self.source_iterator = iter(self.source_dataloader)
source_sample = next(self.source_iterator)
return source_sample
def get_total_fps(self):
time = np.array(self.time_elapsed)
return (self._iter * self.samples_per_gpu) / np.sum(time), np.std(1 / time)
def get_wandb(self):
for hook in self.hooks:
if "Wandb" in hook.__class__.__name__:
return hook.wandb
return None
def get_lr_hook(self):
for hook in self.hooks:
if "Lr" in hook.__class__.__name__:
return hook
return None
def get_lr_iters(self):
return self.domain_indicator.iters
def get_lr(self):
if self.lr_far_domain:
val = self.domain_indicator.get_domain_value()
min_ratio, max_ratio = self.initial_lr, self.lr_far_domain
return self.domain_indicator.linear_interpolation(val, [min_ratio, max_ratio], -1)
else:
return self.initial_lr
def get_lr_schedule(self):
if self.policy_lr == "constant":
return "constant", self.get_lr()
elif self.policy_lr == "adaptive_init":
lr = self.domain_indicator.get_lr()
cur_lr = self.optimizer.param_groups[0]["lr"]
lr = min(lr + cur_lr, self.max_lr)
lr_config = dict(
policy="LinearDecay",
min_lr=0.0,
max_progress=self.domain_indicator.base_iters,
by_epoch=False,
)
elif self.policy_lr == "adaptive_slope":
lr = self.get_lr()
lr_config = dict(
policy="LinearDecay",
min_lr=0.0,
max_progress=self.domain_indicator.iters_train,
by_epoch=False,
)
else:
raise ValueError(f"policy lr {self.policy_lr} not valid")
return lr_config, lr
def replace_lr_hook(self):
lr_config, lr = self.get_lr_schedule()
# set lr
for g in self.optimizer.param_groups:
g["lr"] = lr
if lr_config == "constant":
return
idx = None
for i, hook in enumerate(self.hooks):
if "Lr" in hook.__class__.__name__:
idx = i
break
if idx is not None:
del self.hooks[idx]
self.register_lr_hook(lr_config)
for i, hook in enumerate(self.hooks):
if "Lr" in hook.__class__.__name__:
hook.after_selected(self)
def run_iter(self, data_batch, train_mode, **kwargs):
if self.mode_train:
kwargs["domain_indicator"] = self.domain_indicator.get_args()
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
self.time_elapsed.append(outputs["time"])
else:
outputs = self.model.val_step(data_batch, **kwargs)
self.time_elapsed.append(outputs["time"])
if not isinstance(outputs, dict):
raise TypeError(
'"batch_processor()" or "model.train_step()"'
'and "model.val_step()" must return a dict'
)
if "log_vars" in outputs:
self.log_buffer.update(outputs["log_vars"], outputs["num_samples"])
self.log_buffer.update(dict(time_speed=outputs["time"]))
self.outputs = outputs
if self.domain_indicator.domain_indicator:
self.domain_indicator.add(outputs["log_vars"][self.domain_change])
def train(self, data_loader, **kwargs):
self.model.train()
self.mode = "train"
self.data_loader = data_loader
self._max_iters = self._max_epochs * len(self.data_loader)
self.call_hook("before_train_epoch")
time.sleep(2) # Prevent possible deadlock during epoch transition
for i, target_data in enumerate(self.data_loader):
source_data = self.next_source()
data_batch = {
**source_data,
"target_img_metas": target_data["img_metas"],
"target_img": target_data["img"],
}
self._inner_iter = i
self.call_hook("before_train_iter")
self.run_iter(data_batch, train_mode=True, **kwargs)
changed, _ = self.domain_indicator.domain_changed()
if changed:
self.replace_lr_hook()
self.log_buffer.update(
dict(
domain_detected=self.domain_indicator.get_domain(),
is_training=self.domain_indicator.is_training() if self.mode_train else False,
domain_jump=self.domain_indicator.log_jump,
dynamic_dacs=self.domain_indicator.dacs,
)
)
self.call_hook("after_train_iter")
self._iter += 1
self.call_hook("after_train_epoch")
self._epoch += 1
def run(self, data_loaders, workflow, max_epochs=None, **kwargs):
"""Start running."""
assert isinstance(data_loaders, list)
assert self._max_epochs is not None, "max_epochs must be specified during instantiation"
for i, flow in enumerate(workflow):
mode, epochs = flow
if mode == "train":
self._max_iters = self._max_epochs * len(data_loaders[i])
break
work_dir = self.work_dir if self.work_dir is not None else "NONE"
self.logger.info("Start running, host: %s, work_dir: %s", get_host_info(), work_dir)
self.logger.info("workflow: %s, max: %d epochs", workflow, self._max_epochs)
self.call_hook("before_run")
wandb = self.get_wandb()
while self.epoch < self._max_epochs:
for i, flow in enumerate(workflow):
mode, epochs = flow
if isinstance(mode, str): # self.train()
if not hasattr(self, mode):
raise ValueError(f'runner has no method named "{mode}" to run an ' "epoch")
epoch_runner = getattr(self, mode)
else:
raise TypeError("mode in workflow must be a str, but got {}".format(type(mode)))
for _ in range(epochs):
if mode == "train" and self.epoch >= self._max_epochs:
break
epoch_runner(data_loaders[i], **kwargs)
time.sleep(1) # wait for some hooks like loggers to finish
if wandb:
total_fps, std_fps = self.get_total_fps()
wandb.run.summary["FPS"] = total_fps
wandb.run.summary["FPS_std"] = std_fps
# save fps array just in case in work_dirs
times = np.array(self.time_elapsed)
np.save(f"{self.work_dir}/fps_array.npy", times)
self.call_hook("after_run")