-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy patheval_hooks.py
658 lines (560 loc) · 21.4 KB
/
eval_hooks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# Obtained from: https://github.com/open-mmlab/mmsegmentation/tree/v0.16.0
# Modified Eval_Hooks to add further logs
# Included: OnlineEvalHook, VideoEvalHook, ShiftEvalHook
import os.path as osp
import gc
import numpy as np
import os
from collections import OrderedDict
from functools import reduce
import cv2 as cv
from pathlib import Path
import torch
import torch.distributed as dist
import mmcv
from mmcv import tensor2imgs
from mmcv.runner import DistEvalHook as _DistEvalHook
from mmcv.runner import EvalHook as _EvalHook
from torch.nn.modules.batchnorm import _BatchNorm
from mmcv.utils import print_log
from prettytable import PrettyTable
ite_to_domain = {
0: "clear",
2976: "clear",
5951: "clear",
8926: "clear",
11901: "25mm",
14876: "25mm",
17851: "25mm",
20826: "50mm",
23801: "50mm",
26776: "50mm",
29751: "75mm",
32726: "75mm",
35701: "75mm",
38676: "100mm",
41651: "100mm",
44626: "100mm",
47601: "200mm",
50576: "200mm",
53551: "200mm",
56526: "100mm",
59501: "100mm",
62476: "100mm",
65451: "75mm",
68426: "75mm",
71401: "75mm",
74376: "50mm",
77351: "50mm",
80326: "50mm",
83301: "25mm",
86276: "25mm",
89251: "25mm",
92226: "clear",
95201: "clear",
98176: "clear",
}
domain_to_idx = {
"clear": 0,
"cloudy": 1,
"overcast": 2,
"small_rain": 3,
"mid_rain": 4,
"heavy_rain": 5,
}
class VideoEvalHook(_EvalHook):
"""Video evaluation consists in evaluating the same img that has been used for training."""
greater_keys = ["mIoU", "mAcc", "aAcc"]
def __init__(
self,
dataloaders,
*args,
by_epoch=False,
efficient_test=False,
work_dir=None,
**kwargs,
):
super().__init__(dataloaders[0], *args, by_epoch=by_epoch, **kwargs)
self.efficient_test = efficient_test
self.work_dir = work_dir + "/imgs"
self.before = False
def save_prediction(self, img, img_meta, img_result, model):
img = tensor2imgs(img, **img_meta["img_norm_cfg"])[0]
dataset = self.dataloader.dataset
h, w, _ = img_meta["img_shape"]
img_show = img[:h, :w, :]
ori_h, ori_w = img_meta["ori_shape"][:-1]
img_show = mmcv.imresize(img_show, (ori_w, ori_h))
img_pred = model.module.show_result(
img_show,
img_result,
palette=dataset.PALETTE,
show=False,
out_file=None,
opacity=1,
)
path = f"{self.work_dir}"
Path(path).mkdir(parents=True, exist_ok=True)
cv.imwrite(f'{path}/{img_meta["ori_filename"]}', img_pred)
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
idx = runner.iter
data = self.dataloader.dataset[idx]
img = [data["img"][0][None, :, :, :]]
img_metas = [[data["img_metas"][0].data]]
gt = self.dataloader.dataset.get_idx_seg_map(idx)
runner.model.eval()
with torch.no_grad():
results = runner.model(img, img_metas, return_loss=False)
if self.dataloader.dataset.save_prediction:
self.save_prediction(img[0], img_metas[0][0], results, runner.model)
runner.log_buffer.output["eval_iter_num"] = len(self.dataloader)
# self.evaluate(runner, results, [gt])
def evaluate(self, runner, results, gts=None):
"""Evaluate the results.
Args:
gts: groundtruth corresponding to the result
runner (:obj:`mmcv.Runner`): The underlined training runner.
results (list): Output results.
"""
eval_res = self.evaluate_online(
results,
gts,
self.dataloader.dataset,
logger=runner.logger,
work_dir=self.work_dir,
t=runner.iter,
)
for name, val in eval_res.items():
runner.log_buffer.output[name] = val
runner.log_buffer.ready = True
@staticmethod
# Code obtained from: mmseg/datasets/custom.py
def evaluate_online(
results, gt_seg_maps, dataset, metric="mIoU", logger=None, work_dir=None, t=None
):
"""Evaluate the dataset.
Args:
results (list): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. 'mIoU',
'mDice' and 'mFscore' are supported.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str, float]: Default metrics.
"""
assert len(results) == len(gt_seg_maps) and len(results) == 1
if isinstance(metric, str):
metric = [metric]
allowed_metrics = ["mIoU", "mDice", "mFscore"]
if not set(metric).issubset(set(allowed_metrics)):
raise KeyError("metric {} is not supported".format(metric))
eval_results = {}
if dataset.CLASSES is None:
num_classes = len(reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps]))
else:
num_classes = len(dataset.CLASSES)
from mmseg.core import eval_metrics
ret_metrics = eval_metrics(
results,
gt_seg_maps,
num_classes,
dataset.ignore_index,
metric,
label_map=dataset.label_map,
reduce_zero_label=dataset.reduce_zero_label,
work_dir=work_dir,
t=t,
)
if dataset.CLASSES is None:
class_names = tuple(range(num_classes))
else:
class_names = dataset.CLASSES
# summary table
ret_metrics_summary = OrderedDict(
{
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
for ret_metric, ret_metric_value in ret_metrics.items()
}
)
# each class table
ret_metrics.pop("aAcc", None)
ret_metrics_class = OrderedDict(
{
ret_metric: np.round(ret_metric_value * 100, 2)
for ret_metric, ret_metric_value in ret_metrics.items()
}
)
ret_metrics_class.update({"Class": class_names})
ret_metrics_class.move_to_end("Class", last=False)
# for logger
class_table_data = PrettyTable()
for key, val in ret_metrics_class.items():
class_table_data.add_column(key, val)
summary_table_data = PrettyTable()
for key, val in ret_metrics_summary.items():
if key == "aAcc":
summary_table_data.add_column(key, [val])
else:
summary_table_data.add_column("m" + key, [val])
print_log("per class results:", logger)
print_log("\n" + class_table_data.get_string(), logger=logger)
print_log("Summary:", logger)
print_log("\n" + summary_table_data.get_string(), logger=logger)
# each metric dict
for key, value in ret_metrics_summary.items():
if key == "aAcc":
eval_results[key] = value / 100.0
else:
eval_results["m" + key] = value / 100.0
ret_metrics_class.pop("Class", None)
for key, value in ret_metrics_class.items():
eval_results.update(
{key + "." + str(name): value[idx] / 100.0 for idx, name in enumerate(class_names)}
)
if mmcv.is_list_of(results, str):
for file_name in results:
os.remove(file_name)
return eval_results
class OnlineEvalHook(_EvalHook):
"""Single GPU EvalHook, with efficient test support for Online training.
Evaluate all the domains, regardless of the current domain, to measure forgetness.
"""
greater_keys = ["mIoU", "mAcc", "aAcc"]
def __init__(
self,
dataloaders,
by_epoch=True,
efficient_test=False,
work_dir=None,
num_imgs=50,
**kwargs,
):
super().__init__(dataloaders[0], by_epoch=by_epoch, **kwargs)
self.efficient_test = efficient_test
self.dataloaders = dataloaders
self.work_dir = work_dir + "/preds"
self.first = True
self.first_iter = True
self.iter = False
self.img_to_pred = {i for i in range(num_imgs)}
def _should_evaluate(self, runner):
if runner.iter == 0 and runner.epoch == 0 and self.first:
return False
elif not self.iter:
return super()._should_evaluate(runner)
def before_train_epoch(self, runner):
if runner.iter == 0 and runner.epoch == 0 and self.first:
self._do_evaluate(runner)
super().before_train_epoch(runner)
def after_run(self, runner):
super().after_run(runner)
try:
if not runner.model.module.is_mad_training():
return
except:
return
runner.log_buffer.clear()
probabilities, module_times = runner.model.module.get_mad_info()
for i, (probs, times) in enumerate(zip(probabilities, module_times)):
runner.log_buffer.output[f"MAD_distribution_end"] = probs
runner.log_buffer.output[f"MAD_times_end"] = times
runner.log_buffer.ready = True
for hook in runner.hooks:
if "Wandb" in hook.__class__.__name__:
hook.after_train_epoch(runner)
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
if not self._should_evaluate(runner):
return
self.first = False
from mmseg.apis import single_gpu_test
for dataloader in self.dataloaders:
dataset_name = dataloader.dataset.name
results = single_gpu_test(
runner.model,
dataloader,
show=True,
out_dir=self.work_dir,
num_epoch=runner.iter,
dataset_name=dataset_name,
img_to_pred=self.img_to_pred,
efficient_test=self.efficient_test,
)
self.evaluate(dataloader, runner, results, dataset_name)
# ugly way to ensure ram does not crash having multiple val datasets
del results
gc.collect()
try:
if runner.model.module.is_mad_training():
mad_dist, _ = runner.model.module.get_mad_info(softmax=False)
np.save(f"{self.work_dir}/mad_hist_ite:{runner.iter}", mad_dist)
except:
pass
if runner.iter == 0 and runner.epoch == 0:
mode = runner.mode
runner.mode = "val"
for hook in runner.hooks:
if "Logger" in hook.__class__.__name__:
hook.after_train_epoch(runner)
runner.mode = mode
# if runner.iter == 0 and runner.epoch == 0:
runner.log_buffer.clear()
runner.log_buffer.ready = False
def evaluate(self, dataloader, runner, results, dataset_name=None):
"""Evaluate the results."""
if (
runner.model_name == "ModularEncoderDecoder"
or runner.model_name == "Tent"
or (
runner.model_name == "DACS"
and runner.model.module.model_type == "ModularEncoderDecoder"
)
):
main_results = runner.model.module.get_main_model()
dataset_name = "unknown" if dataset_name is None else dataset_name
eval_res = dataloader.dataset.evaluate(
results, logger=runner.logger, **self.eval_kwargs
)
for name, val in eval_res.items():
runner.log_buffer.output[f"{dataset_name}.decode_{main_results}.{name}"] = val
runner.log_buffer.output[f"{dataset_name}.{name}"] = val
runner.log_buffer.output[f"target_domain"] = runner.data_loader.dataset.domain
runner.log_buffer.ready = True
else:
super().evaluate(runner, results)
class ShiftEvalHook(OnlineEvalHook):
def __init__(
self,
dataloaders,
by_epoch=True,
efficient_test=False,
work_dir=None,
num_imgs=10,
domain_order=None,
epoch_domain=None,
**kwargs,
):
super().__init__(
dataloaders,
by_epoch=by_epoch,
efficient_test=efficient_test,
work_dir=work_dir,
num_imgs=num_imgs,
**kwargs,
)
d = dict(
clear=21216,
cloudy=14127,
overcast=8007,
small_rain=7446,
mid_rain=6375,
heavy_rain=7191,
)
self.total_order = []
for o in domain_order:
aux = [o for _ in range(d[o] * epoch_domain)]
self.total_order += aux
self.ite_to_domain = dict()
for i in range(0, len(self.total_order), self.interval):
self.ite_to_domain[i] = self.total_order[i]
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
if not self._should_evaluate(runner):
return
if runner.iter == 0:
return
self.first = False
from mmseg.apis import single_gpu_test
ite = domain_to_idx[self.ite_to_domain[runner.iter + 1]]
dataloader = self.dataloaders[ite]
dataset_name = dataloader.dataset.name
results = single_gpu_test(
runner.model,
dataloader,
show=True,
out_dir=self.work_dir,
num_epoch=runner.iter,
dataset_name=dataset_name,
img_to_pred=self.img_to_pred,
efficient_test=self.efficient_test,
)
self.evaluate(dataloader, runner, results, dataset_name)
# ugly way to ensure ram does not crash having multiple val datasets
del results
gc.collect()
try:
if runner.model.module.is_mad_training():
mad_dist, _ = runner.model.module.get_mad_info(softmax=False)
np.save(f"{self.work_dir}/mad_hist_ite:{runner.iter}", mad_dist)
except:
pass
if runner.iter == 0 and runner.epoch == 0:
mode = runner.mode
runner.mode = "val"
for hook in runner.hooks:
if "Logger" in hook.__class__.__name__:
hook.after_train_epoch(runner)
runner.mode = mode
# if runner.iter == 0 and runner.epoch == 0:
runner.log_buffer.clear()
runner.log_buffer.ready = False
class EvalHook(_EvalHook):
"""Single GPU EvalHook, with efficient test support.
Args:
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
If set to True, it will perform by epoch. Otherwise, by iteration.
Default: False.
efficient_test (bool): Whether save the results as local numpy files to
save CPU memory during evaluation. Default: False.
Returns:
list: The prediction results.
"""
greater_keys = ["mIoU", "mAcc", "aAcc"]
def __init__(
self,
*args,
by_epoch=False,
efficient_test=False,
work_dir=None,
num_imgs=10,
**kwargs,
):
super().__init__(*args, by_epoch=by_epoch, **kwargs)
self.efficient_test = efficient_test
self.work_dir = work_dir + "/preds"
self.img_to_pred = set(np.random.choice(len(self.dataloader.dataset), num_imgs))
def after_run(self, runner):
super().after_run(runner)
if not runner.model.module.is_mad_training():
return
runner.log_buffer.clear()
probabilities, module_times = runner.model.module.get_mad_info()
for i, (probs, times) in enumerate(zip(probabilities, module_times)):
runner.log_buffer.output[f"MAD_distribution_end_{i}"] = probs
runner.log_buffer.output[f"MAD_times_end_{i}"] = times
runner.log_buffer.ready = True
for hook in runner.hooks:
if "Wandb" in hook.__class__.__name__:
hook.after_train_epoch(runner)
def _should_evaluate(self, runner):
if runner.iter == 0:
return True
else:
return super()._should_evaluate(runner)
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
if not self._should_evaluate(runner):
return
from mmseg.apis import single_gpu_test
results = single_gpu_test(
runner.model,
self.dataloader,
show=True,
out_dir=self.work_dir,
num_epoch=runner.iter,
img_to_pred=self.img_to_pred,
efficient_test=self.efficient_test,
)
runner.log_buffer.output["eval_iter_num"] = len(self.dataloader)
key_score = self.evaluate(runner, results)
if self.save_best:
self._save_ckpt(runner, key_score)
if runner.model.module.is_mad_training():
mad_dist, _ = runner.model.module.get_mad_info(softmax=False)
np.save(f"mad_hist_ite:{runner.iter}", f"{self.work_dir}/{mad_dist}")
if runner.iter == 0:
mode = runner.mode
runner.mode = "train"
for hook in runner.hooks:
if "Logger" in hook.__class__.__name__:
hook.after_train_epoch(runner)
runner.mode = mode
runner.log_buffer.clear()
runner.log_buffer.ready = False
def evaluate(self, runner, results):
"""Evaluate the results.
Args:
runner (:obj:`mmcv.Runner`): The underlined training runner.
results (list): Output results.
"""
if runner.model_name == "ModularEncoderDecoder" or (
runner.model_name == "DACS"
and runner.model.module.model_type == "ModularEncoderDecoder"
):
# Results here is a list of list where results[0] are the results for the first decoder
main_results = runner.model.module.get_main_model()
# extra_output = len(results) > runner.model.module.total_modules
# main_results = len(results) if extra_output else main_results
if isinstance(results[0], list):
for i, decoder_results in enumerate(results):
eval_res = self.dataloader.dataset.evaluate(
decoder_results, logger=runner.logger, **self.eval_kwargs
)
for name, val in eval_res.items():
runner.log_buffer.output[f"decode_{i + 1}.{name}"] = val
if i == main_results - 1:
runner.log_buffer.output[name] = val
else:
eval_res = self.dataloader.dataset.evaluate(
results, logger=runner.logger, **self.eval_kwargs
)
for name, val in eval_res.items():
runner.log_buffer.output[f"decode_{main_results}.{name}"] = val
runner.log_buffer.output[name] = val
runner.log_buffer.ready = True
if self.save_best is not None:
if self.key_indicator == "auto":
# infer from eval_results
self._init_rule(self.rule, list(eval_res.keys())[0])
return eval_res[self.key_indicator]
return None
else:
super().evaluate(runner, results)
class DistEvalHook(_DistEvalHook):
"""Distributed EvalHook, with efficient test support.
Args:
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
If set to True, it will perform by epoch. Otherwise, by iteration.
Default: False.
efficient_test (bool): Whether save the results as local numpy files to
save CPU memory during evaluation. Default: False.
Returns:
list: The prediction results.
"""
greater_keys = ["mIoU", "mAcc", "aAcc"]
def __init__(self, *args, by_epoch=False, efficient_test=False, **kwargs):
super().__init__(*args, by_epoch=by_epoch, **kwargs)
self.efficient_test = efficient_test
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
# Synchronization of BatchNorm's buffer (running_mean
# and running_var) is not supported in the DDP of pytorch,
# which may cause the inconsistent performance of models in
# different ranks, so we broadcast BatchNorm's buffers
# of rank 0 to other ranks to avoid this.
if self.broadcast_bn_buffer:
model = runner.model
for name, module in model.named_modules():
if isinstance(module, _BatchNorm) and module.track_running_stats:
dist.broadcast(module.running_var, 0)
dist.broadcast(module.running_mean, 0)
if not self._should_evaluate(runner):
return
tmpdir = self.tmpdir
if tmpdir is None:
tmpdir = osp.join(runner.work_dir, ".eval_hook")
from mmseg.apis import multi_gpu_test
results = multi_gpu_test(
runner.model,
self.dataloader,
tmpdir=tmpdir,
gpu_collect=self.gpu_collect,
efficient_test=self.efficient_test,
)
if runner.rank == 0:
print("\n")
runner.log_buffer.output["eval_iter_num"] = len(self.dataloader)
key_score = self.evaluate(runner, results)
if self.save_best:
self._save_ckpt(runner, key_score)