Skip to content

Commit 2bbb1b1

Browse files
王枫02-Base DetectionFateScript
王枫02-Base Detection
authored andcommitted
feat(YOLOX): update README and fix serveral bugs.
1 parent bae9234 commit 2bbb1b1

27 files changed

+604
-393
lines changed

README.md

+67-47
Original file line numberDiff line numberDiff line change
@@ -1,37 +1,35 @@
1-
<div align="center"><img src="assets/logo.png" width="600"></div>
2-
1+
<div align="center"><img src="assets/logo.png" width="350"></div>
32
<img src="assets/demo.png" >
43

5-
## <div align="center">Introduction</div>
4+
## Introduction
65
YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities.
76

7+
<img src="assets/git_fig.png" width="1000" >
88

9-
## <div align="center">Why YOLOX?</div>
10-
11-
<div align="center"><img src="assets/fig1.png" width="400" ><img src="assets/fig2.png" width="400"></div>
12-
13-
## <div align="center">News!!</div>
14-
* 【2020/07/19】 We have released our technical report on [Arxiv](xxx)!!
9+
## Updates!!
10+
* 【2020/07/19】 We have released our technical report on Arxiv.
1511

16-
## <div align="center">Benchmark</div>
12+
## Benchmark
1713

18-
### Standard Models.
14+
#### Standard Models.
1915
|Model |size |mAP<sup>test<br>0.5:0.95 | Speed V100<br>(ms) | Params<br>(M) |FLOPs<br>(B)| weights |
2016
| ------ |:---: | :---: |:---: |:---: | :---: | :----: |
21-
|[YOLOX-s]() |640 |39.6 |9.8 |9.0 | 26.8 | - |
22-
|[YOLOX-m]() |640 |46.4 |12.3 |25.3 |73.8| - |
23-
|[YOLOX-l]() |640 |50.0 |14.5 |54.2| 155.6 | - |
24-
|[YOLOX-x]() |640 |**51.2** | 17.3 |99.1 |281.9 | - |
17+
|[YOLOX-s](./exps/yolox_s.py) |640 |39.6 |9.8 |9.0 | 26.8 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EW62gmO2vnNNs5npxjzunVwB9p307qqygaCkXdTO88BLUg?e=NMTQYw) |
18+
|[YOLOX-m](./exps/yolox_m.py) |640 |46.4 |12.3 |25.3 |73.8| [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERMTP7VFqrVBrXKMU7Vl4TcBQs0SUeCT7kvc-JdIbej4tQ?e=1MDo9y) |
19+
|[YOLOX-l](./exps/yolox_l.py) |640 |50.0 |14.5 |54.2| 155.6 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EWA8w_IEOzBKvuueBqfaZh0BeoG5sVzR-XYbOJO4YlOkRw?e=wHWOBE) |
20+
|[YOLOX-x](./exps/yolox_x.py) |640 |**51.2** | 17.3 |99.1 |281.9 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdgVPHBziOVBtGAXHfeHI5kBza0q9yyueMGdT0wXZfI1rQ?e=tABO5u) |
21+
|[YOLOX-Darknet53](./exps/yolov3.py) |640 | 47.4 | 11.1 |63.7 | 185.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZ-MV1r_fMFPkPrNjvbJEMoBLOLAnXH-XKEB77w8LhXL6Q?e=mf6wOc) |
2522

26-
### Light Models.
27-
|Model |size |mAP<sup>val<br>0.5:0.95 | Speed V100<br>(ms) | Params<br>(M) |FLOPs<br>(B)| weights |
28-
| ------ |:---: | :---: |:---: |:---: | :---: | :----: |
29-
|[YOLOX-Nano]() |416 |25.3 |- | 0.91 |1.08 | - |
30-
|[YOLOX-Tiny]() |416 |31.7 |- | 5.06 |6.45 | - |
23+
#### Light Models.
24+
|Model |size |mAP<sup>val<br>0.5:0.95 | Params<br>(M) |FLOPs<br>(B)| weights |
25+
| ------ |:---: | :---: |:---: |:---: | :---: |
26+
|[YOLOX-Nano](./exps/nano.py) |416 |25.3 | 0.91 |1.08 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdcREey-krhLtdtSnxolxiUBjWMy6EFdiaO9bdOwZ5ygCQ?e=yQpdds) |
27+
|[YOLOX-Tiny](./exps/yolox_tiny.py) |416 |31.7 | 5.06 |6.45 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EYtjNFPqvZBBrQ-VowLcSr4B6Z5TdTflUsr_gO2CwhC3bQ?e=SBTwXj) |
3128

32-
## <div align="center">Quick Start</div>
29+
## Quick Start
3330

34-
### Installation
31+
<details>
32+
<summary>Installation</summary>
3533

3634
Step1. Install [apex](https://github.com/NVIDIA/apex).
3735

@@ -47,38 +45,53 @@ $ cd yolox
4745
$ pip3 install -v -e . # or "python3 setup.py develop
4846
```
4947

50-
### Demo
48+
</details>
49+
50+
<details>
51+
<summary>Demo</summary>
52+
53+
Step1. Download a pretrained model from the benchmark table.
5154

52-
You can use either -n or -f to specify your detector's config:
55+
Step2. Use either -n or -f to specify your detector's config. For example:
5356

5457
```shell
55-
python tools/demo.py -n yolox-s -c <MODEL_PATH> --conf 0.3 --nms 0.65 --tsize 640
58+
python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth.tar --path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result
5659
```
5760
or
5861
```shell
59-
python tools/demo.py -f exps/base/yolox_s.py -c <MODEL_PATH> --conf 0.3 --nms 0.65 --tsize 640
62+
python tools/demo.py image -f exps/yolox_s.py -c /path/to/your/yolox_s.pth.tar --path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result
63+
```
64+
Demo for video:
65+
```shell
66+
python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth.tar --path /path/to/your/video --conf 0.3 --nms 0.65 --tsize 640 --save_result
6067
```
6168

6269

63-
<details open>
70+
</details>
71+
72+
<details>
6473
<summary>Reproduce our results on COCO</summary>
6574

66-
Step1.
75+
Step1. Prepare dataset
76+
```shell
77+
cd <YOLOX_HOME>
78+
mkdir datasets
79+
ln -s /path/to/your/COCO ./datasets/COCO
80+
```
6781

68-
* Reproduce our results on COCO by specifying -n:
82+
Step2. Reproduce our results on COCO by specifying -n:
6983

7084
```shell
7185
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
7286
yolox-m
7387
yolox-l
7488
yolox-x
7589
```
76-
Notes:
7790
* -d: number of gpu devices
78-
* -b: total batch size, the recommended number for -b equals to num_gpu * 8
91+
* -b: total batch size, the recommended number for -b is num_gpu * 8
7992
* --fp16: mixed precision training
8093

81-
The above commands are equivalent to:
94+
When using -f, the above commands are equivalent to:
8295

8396
```shell
8497
python tools/train.py -f exps/base/yolox-s.py -d 8 -b 64 --fp16 -o
@@ -87,42 +100,49 @@ python tools/train.py -f exps/base/yolox-s.py -d 8 -b 64 --fp16 -o
87100
exps/base/yolox-x.py
88101
```
89102

90-
* Customize your training.
91-
92-
* Finetune your datset on COCO pretrained models.
93103
</details>
94104

95-
<details open>
105+
106+
<details>
96107
<summary>Evaluation</summary>
108+
97109
We support batch testing for fast evaluation:
98110

99111
```shell
100-
python tools/eval.py -n yolox-s -b 64 --conf 0.001 --fp16 (optional) --fuse (optional) --test (for test-dev set)
112+
python tools/eval.py -n yolox-s -c yolox_s.pth.tar -b 64 -d 8 --conf 0.001 [--fp16] [--fuse]
101113
yolox-m
102114
yolox-l
103115
yolox-x
104116
```
117+
* --fuse: fuse conv and bn
118+
* -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used.
119+
* -b: total batch size across on all GPUs
105120

106121
To reproduce speed test, we use the following command:
107122
```shell
108-
python tools/eval.py -n yolox-s -b 1 -d 0 --conf 0.001 --fp16 --fuse --test (for test-dev set)
123+
python tools/eval.py -n yolox-s -c yolox_s.pth.tar -b 1 -d 1 --conf 0.001 --fp16 --fuse
109124
yolox-m
110125
yolox-l
111126
yolox-x
112127
```
113128

114-
## <div align="center">Deployment</div>
115-
116129
</details>
117130

118-
1. [ONNX: Including ONNX export and an ONNXRuntime demo.]()
119-
2. [TensorRT in both C++ and Python]()
120-
3. [NCNN in C++]()
121-
4. [OpenVINO in both C++ and Python]()
122131

123-
## <div align="center">Cite Our Work</div>
132+
<details open>
133+
<summary>Toturials</summary>
134+
135+
* [Training on custom data](docs/train_custom_data.md).
136+
137+
</details>
138+
139+
## Deployment
124140

125141

126-
If you find this project useful for you, please use the following BibTeX entry.
142+
1. [ONNX: Including ONNX export and an ONNXRuntime demo.](./demo/ONNXRuntime)
143+
2. [TensorRT in both C++ and Python](./demo/TensorRT)
144+
3. [NCNN in C++](./demo/ncnn/android)
145+
4. [OpenVINO in both C++ and Python](./demo/OpenVINO)
127146

128-
TODO
147+
## Citing YOLOX
148+
If you use YOLOX in your research, please cite our work by using the following BibTeX entry:

assets/demo.png

-531 KB
Loading

assets/fig1.png

-88.4 KB
Binary file not shown.

assets/fig2.png

-92.3 KB
Binary file not shown.

assets/git_fig.png

390 KB
Loading

assets/logo.png

-151 KB
Loading

demo/ONNXRuntime/README.md

+14-13
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,18 @@
1-
## ONNXRuntime Demo in Python
1+
## YOLOX-ONNXRuntime in Python
22

33
This doc introduces how to convert you pytorch model into onnx, and how to run an onnxruntime demo to verify your convertion.
44

55
### Download ONNX models.
6-
| Model | Parameters | GFLOPs | Test Size | mAP |
7-
|:------| :----: | :----: | :---: | :---: |
8-
| [YOLOX-Nano](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.res101.fpn.coco.800size.1x) | 0.91M | 1.08 | 416x416 | 25.3 |
9-
| [YOLOX-Tiny](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.fpn.coco.800size.1x) | 5.06M | 6.45 | 416x416 |31.7 |
10-
| [YOLOX-S](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 9.0M | 26.8 | 640x640 |39.6 |
11-
| [YOLOX-M](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 25.3M | 73.8 | 640x640 |46.4 |
12-
| [YOLOX-L](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 54.2M | 155.6 | 640x640 |50.0 |
13-
| [YOLOX-X](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 99.1M | 281.9 | 640x640 |51.2 |
14-
| [YOLOX-Darknet53](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 63.72M | 185.3 | 640x640 |47.3 |
6+
| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
7+
|:------| :----: | :----: | :---: | :---: | :---: |
8+
| YOLOX-Nano | 0.91M | 1.08 | 416x416 | 25.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EfAGwvevU-lNhW5OqFAyHbwBJdI_7EaKu5yU04fgF5BU7w?e=gvq4hf) |
9+
| YOLOX-Tiny | 5.06M | 6.45 | 416x416 |31.7 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EVigCszU1ilDn-MwLwHCF1ABsgTy06xFdVgZ04Yyo4lHVA?e=hVKiCw) |
10+
| YOLOX-S | 9.0M | 26.8 | 640x640 |39.6 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/Ec0L1d1x2UtIpbfiahgxhtgBZVjb1NCXbotO8SCOdMqpQQ?e=siyIsK) |
11+
| YOLOX-M | 25.3M | 73.8 | 640x640 |46.4 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERUKlQe-nlxBoTKPy1ynbxsBmAZ_h-VBEV-nnfPdzUIkZQ?e=hyQQtl) |
12+
| YOLOX-L | 54.2M | 155.6 | 640x640 |50.0 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ET5w926jCA5GlVfg9ixB4KEBiW0HYl7SzaHNRaRG9dYO_A?e=ISmCYX) |
13+
| YOLOX-Darknet53| 63.72M | 185.3 | 640x640 |47.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ESArloSW-MlPlLuemLh9zKkBdovgweKbfu4zkvzKAp7pPQ?e=f81Ikw) |
14+
| YOLOX-X | 99.1M | 281.9 | 640x640 |51.2 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERjqoeMJlFdGuM3tQfXQmhABmGHlIHydWCwhlugeWLE9AA) |
15+
1516

1617
### Convert Your Model to ONNX
1718

@@ -28,15 +29,15 @@ python3 tools/export_onnx.py --output-name yolox_s.onnx -n yolox-s -c yolox_s.pt
2829
Notes:
2930
* -n: specify a model name. The model name must be one of the [yolox-s,m,l,x and yolox-nane, yolox-tiny, yolov3]
3031
* -c: the model you have trained
31-
* -o: opset version, default 11. **However, if you will further convert your onnx model to [OpenVINO](), please specify the opset version to 10.**
32+
* -o: opset version, default 11. **However, if you will further convert your onnx model to [OpenVINO](../OpenVINO/), please specify the opset version to 10.**
3233
* --no-onnxsim: disable onnxsim
3334
* To customize an input shape for onnx model, modify the following code in tools/export.py:
3435

3536
```python
3637
dummy_input = torch.randn(1, 3, exp.test_size[0], exp.test_size[1])
3738
```
3839

39-
2. Convert a standard YOLOX model by -f. By using -f, the above command is equivalent to:
40+
2. Convert a standard YOLOX model by -f. When using -f, the above command is equivalent to:
4041

4142
```shell
4243
python3 tools/export_onnx.py --output-name yolox_s.onnx -f exps/yolox_s.py -c yolox_s.pth.tar
@@ -52,7 +53,7 @@ python3 tools/export_onnx.py --output-name your_yolox.onnx -f exps/your_yolox.py
5253

5354
Step1.
5455
```shell
55-
cd <YOLOX_HOME>/yolox/deploy/demo_onnxruntime/
56+
cd <YOLOX_HOME>/demo/ONNXRuntime
5657
```
5758

5859
Step2.

demo/OpenVINO/README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
## YOLOX on OpenVINO
1+
## YOLOX for OpenVINO
22

3-
* [C++ Demo]()
4-
* [Python Demo]()
3+
* [C++ Demo](./cpp)
4+
* [Python Demo](./python)

demo/OpenVINO/cpp/README.md

+11-11
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
1-
# User Guide for Deploy YOLOX on OpenVINO
1+
# YOLOX-OpenVINO in C++
22

33
This toturial includes a C++ demo for OpenVINO, as well as some converted models.
44

55
### Download OpenVINO models.
6-
| Model | Parameters | GFLOPs | Test Size | mAP |
7-
|:------| :----: | :----: | :---: | :---: |
8-
| [YOLOX-Nano](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.res101.fpn.coco.800size.1x) | 0.91M | 1.08 | 416x416 | 25.3 |
9-
| [YOLOX-Tiny](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.fpn.coco.800size.1x) | 5.06M | 6.45 | 416x416 |31.7 |
10-
| [YOLOX-S](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 9.0M | 26.8 | 640x640 |39.6 |
11-
| [YOLOX-M](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 25.3M | 73.8 | 640x640 |46.4 |
12-
| [YOLOX-L](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 54.2M | 155.6 | 640x640 |50.0 |
13-
| [YOLOX-X](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 99.1M | 281.9 | 640x640 |51.2 |
14-
| [YOLOX-Darknet53](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 63.72M | 185.3 | 640x640 |47.3 |
6+
| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
7+
|:------| :----: | :----: | :---: | :---: | :---: |
8+
| [YOLOX-Nano](../../../exps/nano.py) | 0.91M | 1.08 | 416x416 | 25.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EeWY57o5wQZFtXYd1KJw6Z8B4vxZru649XxQHYIFgio3Qw?e=ZS81ce) |
9+
| [YOLOX-Tiny](../../../exps/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |31.7 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ETfvOoCXdVZNinoSpKA_sEYBIQVqfjjF5_M6VvHRnLVcsA?e=STL1pi) |
10+
| [YOLOX-S](../../../exps/yolox_s.py) | 9.0M | 26.8 | 640x640 |39.6 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EXUjf3PQnbBLrxNrXPueqaIBzVZOrYQOnJpLK1Fytj5ssA?e=GK0LOM) |
11+
| [YOLOX-M](../../../exps/yolox_m.py) | 25.3M | 73.8 | 640x640 |46.4 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EcoT1BPpeRpLvE_4c441zn8BVNCQ2naxDH3rho7WqdlgLQ?e=95VaM9) |
12+
| [YOLOX-L](../../../exps/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.0 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZvmn-YLRuVPh0GAP_w3xHMB2VGvrKqQXyK_Cv5yi_DXUg?e=YRh6Eq) |
13+
| [YOLOX-Darknet53](../../../exps/yolov3.py) | 63.72M | 185.3 | 640x640 |47.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EQP8LSroikFHuwX0jFRetmcBOCDWSFmylHxolV7ezUPXGw?e=bEw5iq) |
14+
| [YOLOX-X](../../../exps/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.2 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZFPnLqiD-xIlt7rcZYDjQgB4YXE9wnq1qaSXQwJrsKbdg?e=83nwEz) |
1515

1616
## Install OpenVINO Toolkit
1717

@@ -51,7 +51,7 @@ source ~/.bashrc
5151

5252
1. Export ONNX model
5353

54-
Please refer to the [ONNX toturial]() for more details. **Note that you should set --opset to 10, otherwise your next step will fail.**
54+
Please refer to the [ONNX toturial](../../ONNXRuntime). **Note that you should set --opset to 10, otherwise your next step will fail.**
5555

5656
2. Convert ONNX to OpenVINO
5757

demo/OpenVINO/python/README.md

+12-12
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
1-
# User Guide for Deploy YOLOX on OpenVINO
1+
# YOLOX-OpenVINO in Python
22

33
This toturial includes a Python demo for OpenVINO, as well as some converted models.
44

55
### Download OpenVINO models.
6-
| Model | Parameters | GFLOPs | Test Size | mAP |
7-
|:------| :----: | :----: | :---: | :---: |
8-
| [YOLOX-Nano](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.res101.fpn.coco.800size.1x) | 0.91M | 1.08 | 416x416 | 25.3 |
9-
| [YOLOX-Tiny](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.fpn.coco.800size.1x) | 5.06M | 6.45 | 416x416 |31.7 |
10-
| [YOLOX-S](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 9.0M | 26.8 | 640x640 |39.6 |
11-
| [YOLOX-M](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 25.3M | 73.8 | 640x640 |46.4 |
12-
| [YOLOX-L](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 54.2M | 155.6 | 640x640 |50.0 |
13-
| [YOLOX-X](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 99.1M | 281.9 | 640x640 |51.2 |
14-
| [YOLOX-Darknet53](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | 63.72M | 185.3 | 640x640 |47.3 |
6+
| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
7+
|:------| :----: | :----: | :---: | :---: | :---: |
8+
| [YOLOX-Nano](../../../exps/nano.py) | 0.91M | 1.08 | 416x416 | 25.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EeWY57o5wQZFtXYd1KJw6Z8B4vxZru649XxQHYIFgio3Qw?e=ZS81ce) |
9+
| [YOLOX-Tiny](../../../exps/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |31.7 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ETfvOoCXdVZNinoSpKA_sEYBIQVqfjjF5_M6VvHRnLVcsA?e=STL1pi) |
10+
| [YOLOX-S](../../../exps/yolox_s.py) | 9.0M | 26.8 | 640x640 |39.6 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EXUjf3PQnbBLrxNrXPueqaIBzVZOrYQOnJpLK1Fytj5ssA?e=GK0LOM) |
11+
| [YOLOX-M](../../../exps/yolox_m.py) | 25.3M | 73.8 | 640x640 |46.4 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EcoT1BPpeRpLvE_4c441zn8BVNCQ2naxDH3rho7WqdlgLQ?e=95VaM9) |
12+
| [YOLOX-L](../../../exps/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.0 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZvmn-YLRuVPh0GAP_w3xHMB2VGvrKqQXyK_Cv5yi_DXUg?e=YRh6Eq) |
13+
| [YOLOX-Darknet53](../../../exps/yolov3.py) | 63.72M | 185.3 | 640x640 |47.3 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EQP8LSroikFHuwX0jFRetmcBOCDWSFmylHxolV7ezUPXGw?e=bEw5iq) |
14+
| [YOLOX-X](../../../exps/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.2 | [Download](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZFPnLqiD-xIlt7rcZYDjQgB4YXE9wnq1qaSXQwJrsKbdg?e=83nwEz) |
1515

1616
## Install OpenVINO Toolkit
1717

@@ -51,7 +51,7 @@ source ~/.bashrc
5151

5252
1. Export ONNX model
5353

54-
Please refer to the [ONNX toturial]() for more details. **Note that you should set --opset to 10, otherwise your next step will fail.**
54+
Please refer to the [ONNX toturial](../../ONNXRuntime). **Note that you should set --opset to 10, otherwise your next step will fail.**
5555

5656
2. Convert ONNX to OpenVINO
5757

@@ -71,7 +71,7 @@ source ~/.bashrc
7171
```
7272
For example:
7373
```shell
74-
python3 mo.py --input_model yolox.onnx --input_shape (1,3,640,640) --data_type FP16
74+
python3 mo.py --input_model yolox.onnx --input_shape [1,3,640,640] --data_type FP16 --output_dir converted_output
7575
```
7676

7777
## Demo

demo/TensorRT/cpp/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
1-
# User Guide for Deploy YOLOX on TensorRT C++
1+
# YOLOX-TensorRT in C++
22

33
As YOLOX models is easy to converted to tensorrt using [torch2trt gitrepo](https://github.com/NVIDIA-AI-IOT/torch2trt),
44
our C++ demo will not include the model converting or constructing like other tenorrt demos.
55

66

77
## Step 1: Prepare serialized engine file
88

9-
Follow the trt [python demo README](../Python/README.md) to convert and save the serialized engine file.
9+
Follow the trt [python demo README](../python/README.md) to convert and save the serialized engine file.
1010

1111

1212
## Step 2: build the demo

0 commit comments

Comments
 (0)