-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathconvert_to_hf.py
319 lines (261 loc) · 10.6 KB
/
convert_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright (c) 2021, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import yaml
import argparse
from tqdm import tqdm
import torch
from transformers import GPTNeoXConfig, GPTNeoXForCausalLM
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
from megatron.tokenizer import build_tokenizer
"""
A script for converting saved NeoX Checkpoints to Huggingface (HF) compatible GPT-NeoX type models.
Note that this script does not support all NeoX features.
Please investigate carefully whether your model is compatible with all architectures supported by the GPTNeoXForCausalLM class in HF.
(e.g. position embeddings such as AliBi may not be supported by Huggingface's GPT-NeoX architecture.
"""
def load_partitions(
input_checkpoint_path, mp_partitions, layer_idx
) -> list[torch.Tensor]:
"""Returns a list containing all weights in a given layer from a model (across MP partitions)"""
loaded_tp_ranks = [
torch.load(
os.path.join(
input_checkpoint_path,
f"layer_{layer_idx:02}-model_{i:02}-model_states.pt",
)
)
for i in range(mp_partitions)
]
return loaded_tp_ranks
def get_key(loaded_config, key, default=None):
"""
Search for a given key in a NeoX yaml. normalizes underscores -> hyphens
"""
key = key.replace("_", "-")
try:
return loaded_config[key]
except KeyError:
key = key.replace("-", "_")
try:
return loaded_config[key]
except KeyError:
return default
def create_config(neox_config):
"""take in a loaded yaml from NeoX and assign relevant values to HF config.
Returns: GPTNeoXConfig() object
"""
class TokenizerArgs:
# kinda hacky.
# this is to get something with the same interface as is used in build_tokenizer()
# without diving into loading a neox_args object or using argparse etc.
def __init__(self, neox_config):
self.make_vocab_size_divisible_by = get_key(
neox_config, "make-vocab-size-divisible-by", default=128
)
self.model_parallel_size = get_key(neox_config, "model-parallel-size")
self.vocab_file = get_key(neox_config, "vocab-file")
self.merge_file = get_key(neox_config, "merge-file")
self.tokenizer_type = get_key(neox_config, "tokenizer-type")
self.rank = 0
args = TokenizerArgs(neox_config)
tokenizer = build_tokenizer(args)
try: # GPT2TokenizerFast raises NotImplementedError
pad_token = tokenizer.pad
except:
pad_token = (
1 # pad defaulting to 1. follows convention from GPT-NeoX-20b tokenizer
)
# TODO: change the default value here based on discussion regarding `gpt_j_tied` config parameter's default
use_tied_lns = get_key(neox_config, "gpt-j-tied", False)
if use_tied_lns:
raise NotImplementedError(
"""ERROR: Huggingface Transformers does not yet support a single shared layernorm
per transformer block for GPT-NeoX models trained w/ GPT-J parallel residuals.
See https://github.com/EleutherAI/gpt-neox/pull/481 for further details."""
)
# set all config values.
hf_config = GPTNeoXConfig(
vocab_size=args.padded_vocab_size,
hidden_size=get_key(neox_config, "hidden-size"),
num_hidden_layers=get_key(neox_config, "num-layers"),
num_attention_heads=get_key(neox_config, "num-attention-heads"),
intermediate_size=(get_key(neox_config, "hidden-size") * 4),
hidden_act=get_key(neox_config, "activation", default="gelu"),
rotary_pct=get_key(neox_config, "rotary-pct", default=1.0),
rotary_emb_base=get_key(neox_config, "rotary-emb-base", default=10000),
max_position_embeddings=get_key(neox_config, "max-position-embeddings"),
initializer_range=get_key(neox_config, "init-method-std", 0.02),
layer_norm_eps=get_key(neox_config, "layernorm-epsilon", 1e-5),
use_cache=True,
bos_token_id=tokenizer.eod,
eos_token_id=tokenizer.eod,
tie_word_embeddings=(not get_key(neox_config, "no-weight-tying", False)),
use_parallel_residual=get_key(neox_config, "gpt-j-residual", False),
)
return hf_config
def convert(input_checkpoint_path, loaded_config, output_checkpoint_path):
"""convert a NeoX checkpoint to a HF model format.
should perform model-parallel merging correctly
but only supports features allowed by HF GPT-NeoX implementation (e.g. rotary embeddings)
"""
hf_config = GPTNeoXConfig()
hf_config = create_config(loaded_config)
hf_model = GPTNeoXForCausalLM(
hf_config
).half() # nice-to-have: lazy init weights somehow?
mp_partitions = get_key(loaded_config, "model-parallel-size")
### Embedding layer ###
loaded_tp_ranks = load_partitions(input_checkpoint_path, mp_partitions, 0)
hf_model.gpt_neox.embed_in.load_state_dict(
{
"weight": torch.cat(
[t["word_embeddings.weight"] for t in loaded_tp_ranks], dim=0
)
}
)
assert (
hf_config.vocab_size == hf_model.gpt_neox.embed_in.weight.shape[0]
), f"ERROR: calculated vocab size {hf_config.vocab_size} != embed param size {hf_model.gpt_neox.embed_in.shape[0]}"
### End Embedding Layer ###
for layer_i in tqdm(range(get_key(loaded_config, "num-layers"))):
# get layer from hf model
hf_layer = hf_model.gpt_neox.layers[layer_i]
# + 2 bc of embed layer and a dummy _pre_transformer_block
loaded_tp_ranks = load_partitions(
input_checkpoint_path, mp_partitions, layer_i + 2
)
state_dict = {}
for key in [
"attention.dense.weight",
"mlp.dense_4h_to_h.weight",
]:
state_dict[key] = torch.cat([t[key] for t in loaded_tp_ranks], dim=1)
# average layernorm stats over mp ranks
for key in [
"input_layernorm.weight",
"input_layernorm.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
]:
state_dict[key] = (sum([t[key] for t in loaded_tp_ranks])) / len(
loaded_tp_ranks
)
# LinearWithTPMerge
for key in [
"mlp.dense_h_to_4h.weight",
"mlp.dense_h_to_4h.bias",
"attention.query_key_value.weight",
"attention.query_key_value.bias",
]:
state_dict[key] = torch.cat([t[key] for t in loaded_tp_ranks], dim=0)
# LinearWithTPSplitBias
for key in [
"mlp.dense_4h_to_h.bias",
"attention.dense.bias",
]:
state_dict[key] = sum([t[key] for t in loaded_tp_ranks])
# Just take one
state_dict["attention.rotary_emb.inv_freq"] = loaded_tp_ranks[0][
"attention.rotary_emb.inv_freq"
]
state_dict["attention.bias"] = hf_layer.state_dict()["attention.bias"]
state_dict["attention.masked_bias"] = hf_layer.state_dict()[
"attention.masked_bias"
]
# load state_dict into layer
hf_layer.load_state_dict(state_dict)
# Load final layer norm
loaded_tp_ranks = load_partitions(
input_checkpoint_path, mp_partitions, get_key(loaded_config, "num-layers") + 3
)
hf_model.gpt_neox.final_layer_norm.load_state_dict(
{
"weight": (sum([t["norm.weight"] for t in loaded_tp_ranks]))
/ len(loaded_tp_ranks),
"bias": (sum([t["norm.bias"] for t in loaded_tp_ranks]))
/ len(loaded_tp_ranks),
}
)
del loaded_tp_ranks
# Load output embedding
loaded_tp_ranks = load_partitions(
input_checkpoint_path, mp_partitions, get_key(loaded_config, "num-layers") + 4
)
hf_model.embed_out.load_state_dict(
{
"weight": torch.cat(
[t["final_linear.weight"] for t in loaded_tp_ranks], dim=0
),
}
)
del loaded_tp_ranks
return hf_model
if __name__ == "__main__":
# before running script:
# `pip install --upgrade transformers`
# `huggingface-cli login`
#
from huggingface_hub import create_repo, HfApi
parser = argparse.ArgumentParser(
description="Merge MP partitions and convert to HF Model."
)
parser.add_argument(
"--input_dir",
type=str,
help="Path to NeoX checkpoint, e.g. /path/to/model/global_step143000",
)
parser.add_argument(
"--config_file",
type=str,
help="Path to config file for the input NeoX checkpoint.",
)
parser.add_argument(
"--output_dir",
type=str,
help="Output dir, where to save the HF Model, tokenizer, and configs",
)
parser.add_argument(
"--upload",
action="store_true",
help="Set to true in order to upload to the HF Hub directly.",
)
args = parser.parse_args()
with open(args.config_file) as f:
loaded_config = yaml.full_load(f)
hf_model = convert(args.input_dir, loaded_config, args.output_dir)
hf_model.save_pretrained(args.output_dir)
# save tokenizer to directory as well, for easy loading of model as a HF model
tokenizer_type = get_key(loaded_config, "tokenizer-type")
if tokenizer_type == "HFTokenizer":
print(f"saving tokenizer from file {get_key(loaded_config, 'vocab-file')}")
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast(
tokenizer_file=get_key(loaded_config, "vocab-file")
)
print("loaded tokenizer: ", tokenizer)
tokenizer.save_pretrained(args.output_dir)
print("tokenizer saved!")
if args.upload:
repo_name = input("Provide a repository name for the HF Hub: ")
create_repo(repo_name, repo_type="model", private=False, use_auth_token=True)
api = HfApi()
api.upload_folder(
folder_path=args.output_dir,
repo_id=repo_name,
repo_type="model",
)