-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_rl_trainer_llama_instruct.sh
68 lines (63 loc) · 2.57 KB
/
run_rl_trainer_llama_instruct.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
set -x
# Environment variables
export VLLM_ATTENTION_BACKEND=XFORMERS
export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
export MKL_THREADING_LAYER=GNU
export TORCH_CUDA_ALLOW_TF32=1
export HYDRA_FULL_ERROR=1
# export HF_ENDPOINT=https://hf-mirror.com
export CUDA_VISIBLE_DEVICES=0,1,2,3
# wandb configuration
export WANDB_MODE=online
export WANDB_API_KEY=c2fe654fd0527d4fad92e03cdc1e3f59b9a20595
export WANDB_BASE_URL=https://api.wandb.ai
# Default parameters
BASE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
DATA_DIR="data/social_iqa_processed_llama_instruct_template"
EXPERIMENT_NAME="Llama3BInstruct-SocialIQa-REINFORCE++-4RTX4090-$(date +%Y%m%d%H%M)"
PROJECT_NAME="DeepEnlighten"
N_GPUS=4
ROLLOUT_TP_SIZE=4
# Clear GPU memory cache
python -c "import torch; torch.cuda.empty_cache()"
# Start training
python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=reinforce_plus_plus \
data.train_files=$DATA_DIR/train.parquet \
data.val_files=$DATA_DIR/test.parquet \
data.train_batch_size=4 \
data.val_batch_size=16 \
data.max_prompt_length=512 \
data.max_response_length=1024 \
actor_rollout_ref.model.path=$BASE_MODEL \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=8 \
actor_rollout_ref.actor.ppo_micro_batch_size=4 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.log_prob_micro_batch_size=8 \
actor_rollout_ref.rollout.tensor_model_parallel_size=$ROLLOUT_TP_SIZE \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.5 \
actor_rollout_ref.rollout.n=8 \
actor_rollout_ref.rollout.temperature=0.7 \
+actor_rollout_ref.rollout.val_temperature=0.7 \
actor_rollout_ref.ref.log_prob_micro_batch_size=8 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.critic_warmup=0 \
trainer.logger=['wandb'] \
trainer.project_name=$PROJECT_NAME \
trainer.experiment_name=$EXPERIMENT_NAME \
trainer.n_gpus_per_node=$N_GPUS \
trainer.nnodes=1 \
trainer.save_freq=500 \
trainer.test_freq=500 \
trainer.default_hdfs_dir=./saved_models \
trainer.total_epochs=1 \
+trainer.val_before_train=True 2>&1 | tee log.log