-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
575 lines (466 loc) · 23.8 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import pandas as pd
import numpy as np
import rdkit
from rdkit import Chem
from rdkit.Chem import Draw
import os
import pickle
from PIL import Image
import torch.nn.functional as F
from data import ModelLoader
from data import dataPrepare
from data.model_loader import Genetic_Encoder
from utils import molCalSim, set_seed, tensorize
from hgraph import PairVocab
import torch
import argparse
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=0)
parser.add_argument('--amp', default=True)
parser.add_argument('--mask_value', default=-1)
parser.add_argument('--batch_size', default=100)
parser.add_argument('--faci_n_layers', default=4)
parser.add_argument('--dropout', default=0.2)
parser.add_argument('--device', default=torch.device('cuda'))
parser.add_argument('--geneModel_file', default=r'weight/scGPT_origin/')
parser.add_argument('--genetic_vocab_file', default=r'weight/scGPT_origin/vocab.json')
parser.add_argument('--vocab_drug', default=r'weight/molecular/scaffold.txt')
parser.add_argument('--buckets', default='weight/molecular/buckets_1024.npy')
parser.add_argument('--pca_mean', default='weight/molecular/pca_mean.npy')
parser.add_argument('--pca_comp', default='weight/molecular/pca_component.npy')
parser.add_argument('--drugModel_file', default=r'weight/molecular/decoder/drug.pt') # Details see 1..py
parser.add_argument('--geneModel_path', default=r'weight/genetic/alignment/alignment.pt') # Details see 2..py
parser.add_argument('--facilitator_path', default=r'weight/genetic/facilitator/facilitator.pt') # Details see 3..py
parser.add_argument('--pad_token', default="<pad>")
parser.add_argument('--granu', default=3)
args = parser.parse_args()
# fix seed
set_seed(args.seed)
# Load Model
# # Load DrugModel
model_loader = ModelLoader(drugModel_file=args.drugModel_file, geneModel_file=args.geneModel_file)
drugModel = model_loader.DrugLoader(drug_vocab_file=args.vocab_drug)
drugModel = drugModel.to(args.device)
# # Load GeneModel
model = model_loader.GeneLoader(args=args)
facilitator = model_loader.FaciLoader(args=args, path=args.facilitator_path)
model.drug_decoder = facilitator
model = model.to(args.device)
buckets = torch.from_numpy(np.load(args.buckets)).to(args.device)
pca_mean = torch.from_numpy(np.load(args.pca_mean)).to(args.device)
pca_comp = torch.from_numpy(np.load(args.pca_comp)).to(args.device)
def discrete2continue(discrete_emb, buckets, pca_mean, pca_comp):
"""Inverse Transformation of PCA"""
continuous_emb = torch.zeros_like(discrete_emb, dtype=torch.float64)
for i in range(continuous_emb.shape[0]):
for j in range(continuous_emb.shape[1]):
continuous_emb[i][j] = buckets[int(discrete_emb[i][j])]
continuous_emb = torch.matmul(continuous_emb, pca_comp) + pca_mean.unsqueeze(0)
return continuous_emb
def generator(control,
pert,
beam_width=2,
seed=0):
"""
Args:
control: Gene expression data from control groups
pert: Gene expression data from pert groups
gene_name: (optional) Gene categories
beam_width: The number of candidate molecules to generate
seed: Different seeds yield different results
Returns:
hit_like_smiles: A List containing candidate molecules
hit_like_mols: Molecules in RDKit's Mol format
"""
# Fix seed
set_seed(seed)
# Load Dataset
control = pd.read_csv(control.name, index_col=0, nrows=None) # sample_num * gene_num
pert = pd.read_csv(pert.name, index_col=0, nrows=None) # sample_num * gene_num
# # The gene categories in the control group and the experimental group need to be the same.
if control.columns.tolist() != pert.columns.tolist():
raise ValueError("The column names of the two CSV files do not match.")
data_prepare= dataPrepare(genetic_vocab_file=args.genetic_vocab_file, batch_size=args.batch_size)
data_loader = data_prepare.main(control=control, pert=pert)
# Inference
drugModel.eval()
model.eval()
hit_like_smiles = [[] for _ in range(beam_width)]
hit_like_mols = [[] for _ in range(beam_width)]
with torch.no_grad():
for batch, batch_data in enumerate(data_loader):
input_gene_ids = batch_data["genes"].cuda()
input_values = batch_data["values"].cuda().float()
src_key_padding_mask = torch.zeros_like(input_gene_ids, dtype=torch.bool).cuda()
seq_length = input_values.shape[-1]
with torch.cuda.amp.autocast(enabled=True):
output_ctl, \
output10_ctl, \
output100_ctl, \
output1000_ctl = Genetic_Encoder(model=model,
input_values=input_values[:, :seq_length // 2],
input_gene_ids=input_gene_ids[:, :seq_length // 2],
src_key_padding_mask=src_key_padding_mask[:, :seq_length // 2])
output_desir, \
output10_desir, \
output100_desir, \
output1000_desir = Genetic_Encoder(model=model,
input_values=input_values[:, seq_length // 2:],
input_gene_ids=input_gene_ids[:, seq_length // 2:],
src_key_padding_mask=src_key_padding_mask[:, seq_length // 2:])
cell_feat = output_desir - output_ctl
prediction = model.drug_decoder.predict(cell_feat, model.drug_embed, beam_width=beam_width)
continuous_emb = discrete2continue(torch.from_numpy(np.array(prediction)).cuda(), buckets, pca_mean, pca_comp)
continuous_emb = continuous_emb.float().reshape((beam_width, -1, 64))
for i in range(beam_width):
generate_candidates = drugModel.sample(continuous_emb[i], greedy=True)
hit_like_mols[i].extend(generate_candidates[0])
hit_like_smiles[i].extend(generate_candidates[1])
torch.cuda.empty_cache()
return hit_like_smiles, hit_like_mols
def generator_local(control,
pert,
beam_width=2,
seed=0):
"""
Args:
control: Gene expression data from control groups
pert: Gene expression data from pert groups
beam_width: The number of candidate molecules to generate
seed: Different seeds yield different results
Returns:
hit_like_smiles: A List containing candidate molecules
hit_like_mols: Molecules in RDKit's Mol format
"""
# Fix seed
set_seed(seed)
# # The gene categories in the control group and the experimental group need to be the same.
if control.columns.tolist() != pert.columns.tolist():
raise ValueError("The column names of the two CSV files do not match.")
data_prepare= dataPrepare(genetic_vocab_file=args.genetic_vocab_file, batch_size=args.batch_size)
data_loader = data_prepare.main(control=control, pert=pert)
# Inference
drugModel.eval()
model.eval()
hit_like_smiles = [[] for _ in range(beam_width)]
hit_like_mols = [[] for _ in range(beam_width)]
with torch.no_grad():
for batch, batch_data in enumerate(data_loader):
input_gene_ids = batch_data["genes"].cuda()
input_values = batch_data["values"].cuda().float()
src_key_padding_mask = torch.zeros_like(input_gene_ids, dtype=torch.bool).cuda()
seq_length = input_values.shape[-1]
with torch.cuda.amp.autocast(enabled=True):
output_ctl, \
output10_ctl, \
output100_ctl, \
output1000_ctl = Genetic_Encoder(model=model,
input_values=input_values[:, :seq_length // 2],
input_gene_ids=input_gene_ids[:, :seq_length // 2],
src_key_padding_mask=src_key_padding_mask[:, :seq_length // 2])
output_desir, \
output10_desir, \
output100_desir, \
output1000_desir = Genetic_Encoder(model=model,
input_values=input_values[:, seq_length // 2:],
input_gene_ids=input_gene_ids[:, seq_length // 2:],
src_key_padding_mask=src_key_padding_mask[:, seq_length // 2:])
cell_feat = output_desir - output_ctl
prediction = model.drug_decoder.predict(cell_feat, model.drug_embed, beam_width=beam_width)
continuous_emb = discrete2continue(torch.from_numpy(np.array(prediction)).cuda(), buckets, pca_mean, pca_comp)
continuous_emb = continuous_emb.float().reshape((beam_width, -1, 64))
for i in range(beam_width):
generate_candidates = drugModel.sample(continuous_emb[i], greedy=True)
hit_like_mols[i].extend(generate_candidates[0])
hit_like_smiles[i].extend(generate_candidates[1])
torch.cuda.empty_cache()
return hit_like_smiles, hit_like_mols
def Searching_local(control,
pert,
beam_width=2,
ref_smiles=None,
seed=0,
first_processed=True,
data_folder=None):
"""
Args:
control: Gene expression data from control groups
pert: Gene expression data from pert groups
beam_width: The number of candidate molecules to generate
seed: Different seeds yield different results
first_processed: Indicates whether preprocessing is needed
(the same search molecular dataset can be skipped after being preprocessed once)
data_folder: The location where it is saved after the first preprocessing
Returns:
smiles: The small molecules found
scores: The corresponding matching score (modal cosine similarity)
"""
# Fix seed
set_seed(seed)
# # The gene categories in the control group and the experimental group need to be the same.
if control.columns.tolist() != pert.columns.tolist():
raise ValueError("The column names of the two CSV files do not match.")
data_prepare= dataPrepare(genetic_vocab_file=args.genetic_vocab_file, batch_size=args.batch_size)
data_loader = data_prepare.main(control=control, pert=pert)
# Preprocessed reference molecules
with open(args.vocab_drug, 'r') as f:
vocab_drug = [line.strip().split() for line in f]
vocab_drug = PairVocab(vocab_drug)
# If there are too many data that exceed 1000*batch_size, save them in multiple files
if first_processed or not os.path.isdir(data_folder):
ref_processed = []
for batch in ref_smiles:
try:
tensorize([batch], vocab=vocab_drug)
ref_processed.append(batch)
except:
print(f'Sorry, {batch} can not tokenized...')
pass
all_mol_graphs = []
batches = [ref_processed[i: i + args.batch_size] for i in range(0, len(ref_processed), args.batch_size)]
for batch in batches:
all_mol_graphs.append(tensorize(batch, vocab=vocab_drug))
os.makedirs(data_folder)
with open(data_folder+'tensors.pkl', 'wb') as f:
pickle.dump(all_mol_graphs, f, pickle.HIGHEST_PROTOCOL)
else:
ref_processed = ref_smiles
all_mol_graphs = []
data_files = [fn for fn in os.listdir(data_folder) if fn.endswith('.pkl')]
for fn in data_files:
print('Now turn to {}'.format(fn))
fn = os.path.join(data_folder, fn)
with open(fn, 'rb') as f:
batches = pickle.load(f)
all_mol_graphs.extend(batches)
# Inference
drugModel.eval()
model.eval()
smiles = []
search_score = []
with torch.no_grad():
for batch, batch_data in enumerate(data_loader):
input_gene_ids = batch_data["genes"].cuda()
input_values = batch_data["values"].cuda().float()
src_key_padding_mask = torch.zeros_like(input_gene_ids, dtype=torch.bool).cuda()
seq_length = input_values.shape[-1]
with torch.cuda.amp.autocast(enabled=True):
output_ctl, \
output10_ctl, \
output100_ctl, \
output1000_ctl = Genetic_Encoder(model=model,
input_values=input_values[:, :seq_length // 2],
input_gene_ids=input_gene_ids[:, :seq_length // 2],
src_key_padding_mask=src_key_padding_mask[:, :seq_length // 2])
output_desir, \
output10_desir, \
output100_desir, \
output1000_desir = Genetic_Encoder(model=model,
input_values=input_values[:, seq_length // 2:],
input_gene_ids=input_gene_ids[:, seq_length // 2:],
src_key_padding_mask=src_key_padding_mask[:, seq_length // 2:])
cell_feat = output_desir - output_ctl
global_similarity = None
for i, drug in enumerate(all_mol_graphs):
# Drug Embedding
drug_feat = drugModel.latent(*drug)
drug_feat = torch.bucketize(drug_feat, buckets)
# Calculate Similarity (query_cell_num, search_drug_num)
drug_feat = model.drug_embed(drug_feat)
cell_emb = F.normalize(torch.mean(cell_feat, dim=1), dim=-1)
drug_emb = F.normalize(torch.mean(drug_feat, dim=1), dim=-1)
similarity = torch.matmul(cell_emb, drug_emb.t()) / model.temp
if global_similarity is None:
global_similarity = similarity
else:
global_similarity = torch.cat([global_similarity, similarity], dim=1)
# Search for the most k related drugs
top_values, top_indices = torch.topk(global_similarity, k=beam_width, largest=True, dim=1)
# Record results
top_indices = top_indices.detach().cpu().numpy()
top_values = top_values.detach().cpu().numpy()
smiles_list = np.array(ref_processed)
for i in range(cell_feat.shape[0]):
smiles.append(smiles_list[top_indices[i]].tolist())
search_score.append(top_values[i].tolist())
return np.array(smiles), np.array(search_score)
def Searching(control, \
pert, \
searching_smiles, \
ref_smiles=None, \
method=None, \
beam_width=20,\
seed=0):
"""
Args:
control: Gene expression data from control groups
pert: Gene expression data from pert groups
ref_smiles: (default None) Can further similarity screen the small molecules found
method: (default None) Indicator for further similarity screening of the found small molecules
beam_width: The number of candidate molecules to generate
seed: Different seeds yield different results
"""
# Load Dataset
control = pd.read_csv(control.name, index_col=0, nrows=None) # sample_num * gene_num
pert = pd.read_csv(pert.name, index_col=0, nrows=None) # sample_num * gene_num
# # The gene categories in the control group and the experimental group need to be the same.
if control.columns.tolist() != pert.columns.tolist():
raise ValueError("The column names of the two CSV files do not match.")
# Read ref_smiles
if searching_smiles.name.endswith(".txt"):
searching_smiles = pd.read_csv(searching_smiles.name, header=None, squeeze=True).to_list()
elif searching_smiles.name.endswith(".csv"):
searching_smiles = pd.read_csv(searching_smiles.name,squeeze=True, index_col=0).to_list()
searched_smiles, searched_scores = Searching_local(control=control,
pert=pert,
ref_smiles=searching_smiles,
beam_width=beam_width,
seed=seed)
if ref_smiles is not None:
# Read ref_smiles
if ref_smiles.name.endswith(".txt"):
ref_smiles = pd.read_csv(ref_smiles.name, header=None, squeeze=True).to_list()
elif ref_smiles.name.endswith(".csv"):
ref_smiles = pd.read_csv(ref_smiles.name, squeeze=True, index_col=0).to_list()
# Screen
searched_smiles = searched_smiles.T.tolist()
searched_scores = searched_scores.T.tolist()
assert len(searched_smiles) == beam_width
result_smiles = []
query_data = pd.DataFrame()
for i in range(beam_width):
temp = np.tile(np.array(ref_smiles), (len(searched_smiles[i]), 1)).T
simCalculator = molCalSim(ref_smile=searched_smiles[i], gen_smiles=list(temp))
temp_smiles, temp_scores = simCalculator.main(query_smiles=list(temp), method=method)
result_smiles.append(temp_smiles)
query_data[f"result_smiles{i}"] = np.array(temp_scores).astype(float)
del temp_smiles, temp_scores
query_data['max_column'] = query_data.idxmax(axis=1)
query_data['max_value'] = query_data.max(axis=1)
max_smiles = []
max_scores_clip = []
ref_smiles = []
for index, row in query_data.iterrows():
max_column = row['max_column']
max_smiles.append(searched_smiles[eval(f"{max_column[-1]}")][index])
max_scores_clip.append(searched_scores[eval(f"{max_column[-1]}")][index])
ref_smiles.append(result_smiles[eval(f"{max_column[-1]}")][index])
max_scores = query_data['max_value'].tolist()
sorted_data = sorted(zip(max_scores, ref_smiles, max_smiles,max_scores_clip), reverse=True)
max_scores, ref_smiles, max_smiles, max_scores_clip = zip(*sorted_data)
# Output
hit_like_smiles = pd.DataFrame({'Ref': ref_smiles, \
'Searched_smiles': max_smiles, \
'Scores': np.array(max_scores).astype(float),
'Searched_scores':np.array(max_scores_clip).astype(float)})
print(max(max_scores))
hit_like_smiles.to_csv('GexMolGen_output.csv')
return 'GexMolGen_output.csv'
else:
searched_scores = searched_scores.flatten()
searched_smiles = searched_smiles.flatten()
index = np.repeat(np.arange(control.shape[0]), beam_width)
result = pd.DataFrame({'Searched_smiles':searched_smiles,'Searched_scores':searched_scores,'data_index':index})
result.to_csv('GexMolGen_output.csv')
return 'GexMolGen_output.csv'
def Standard(control,
pert,
beam_width=2,
seed=0):
"""
Args:
control: Gene expression data from control groups
pert: Gene expression data from pert groups
gene_name: (optional) Gene categories
beam_width: The number of candidate molecules to generate
seed: Different seeds yield different results
Returns:
hit_like_smiles: A CSV file containing candidate molecules
hit_like_figs: Figures showing candidate molecules in PIL.Image format
"""
# Generate
hit_like_smiles, hit_like_mols = generator(control=control,
pert=pert,
beam_width=beam_width,
seed=seed)
# Draw pictures
hit_like_mols = np.array(hit_like_mols).T
hit_like_mols = hit_like_mols.tolist()
molsPerRow = len(hit_like_mols[0]) if len(hit_like_mols[0]) < 5 else 5
hit_like_figs = [Draw.MolsToGridImage(hit_like_mols[i], molsPerRow=molsPerRow, subImgSize=(600, 600)) \
for i in range(len(hit_like_mols))]
hit_like_figs = [Image.fromarray(np.array(hit_like_figs[i])) for i in range(len(hit_like_mols))]
# Output
hit_like_smiles = np.array(hit_like_smiles).T
hit_like_smiles = pd.DataFrame(hit_like_smiles)
hit_like_smiles.to_csv('GexMolGen_output.csv')
return 'GexMolGen_output.csv', hit_like_figs
def Screen(control,
pert,
ref_smiles=None,
method='Morgan',
beam_width=1,
seed=0):
"""
Args:
control: Gene expression data from control groups
pert: Gene expression data from knock-out groups
ref_smiles: Known inhibitor list
method: The method chosen to calculate similarity: 'Morgan', 'MACCS', 'Fraggle'
gene_name: (optional) Gene categories
beam_width: The number of candidate molecules to generate
seed: Different seeds yield different results
Returns:
hit_like_smiles: A CSV file containing the most similar molecules to the reference molecule,
along with their similarity scores
hit_like_figs: Figures showing the reference molecule and the most similar generated molecules
"""
# Read ref_smiles
if ref_smiles.name.endswith(".txt"):
ref_smiles = pd.read_csv(ref_smiles.name, header=None, squeeze=True).to_list()
elif ref_smiles.name.endswith(".csv"):
ref_smiles = pd.read_csv(ref_smiles.name, squeeze=True, index_col=0).to_list()
# Generate
hit_like_smiles, _ = generator(control=control,
pert=pert,
beam_width=beam_width,
seed=seed)
# Screen
assert len(hit_like_smiles) == beam_width
result_smiles = []
query_data = pd.DataFrame()
for i in range(beam_width):
temp = np.tile(np.array(ref_smiles), (len(hit_like_smiles[i]), 1)).T
simCalculator = molCalSim(ref_smile=hit_like_smiles[i], gen_smiles=list(temp))
temp_smiles, temp_scores = simCalculator.main(query_smiles=list(temp), method=method)
result_smiles.append(temp_smiles)
query_data[f"result_smiles{i}"] = np.array(temp_scores).astype(float)
del temp_smiles, temp_scores
query_data['max_column'] = query_data.idxmax(axis=1)
query_data['max_value'] = query_data.max(axis=1)
max_smiles = []
ref_smiles = []
for index, row in query_data.iterrows():
max_column = row['max_column']
max_smiles.append(hit_like_smiles[eval(f"{max_column[-1]}")][index])
ref_smiles.append(result_smiles[eval(f"{max_column[-1]}")][index])
max_scores = query_data['max_value'].tolist()
sorted_data = sorted(zip(max_scores, ref_smiles, max_smiles), reverse=True)
max_scores, ref_smiles, max_smiles = zip(*sorted_data)
# Draw pictures
hit_like_mols = [Chem.MolFromSmiles(smi) for smi in max_smiles]
ref_mols = [Chem.MolFromSmiles(smi) for smi in ref_smiles]
mols_gather = [ref_mols, hit_like_mols]
mols_gather = np.array(mols_gather).T
mols_gather = mols_gather.tolist()
hit_like_figs = [Draw.MolsToGridImage(mols_gather[i], molsPerRow=2, subImgSize=(600, 600)) \
for i in range(len(mols_gather))]
hit_like_figs = [Image.fromarray(np.array(hit_like_figs[i])) for i in range(len(mols_gather))]
# Output
hit_like_smiles = pd.DataFrame({'Ref': ref_smiles, \
'Generate': max_smiles, \
'Scores': np.array(max_scores).astype(float)})
hit_like_smiles.to_csv('GexMolGen_output.csv')
return 'GexMolGen_output.csv', hit_like_figs