Skip to content

Commit 9f8fd33

Browse files
vivaxytrekhleb
authored andcommittedJul 13, 2018
feat(algorithms): ✨Add Floyd-Warshall (trekhleb#97)
1 parent 3e8540b commit 9f8fd33

File tree

6 files changed

+194
-5
lines changed

6 files changed

+194
-5
lines changed
 

‎README.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,8 @@ a set of rules that precisely define a sequence of operations.
113113
* `A` [Hamiltonian Cycle](src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
114114
* `A` [Strongly Connected Components](src/algorithms/graph/strongly-connected-components) - Kosaraju's algorithm
115115
* `A` [Travelling Salesman Problem](src/algorithms/graph/travelling-salesman) - shortest possible route that visits each city and returns to the origin city
116-
* **Uncategorized**
116+
* `A` [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - a single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices
117+
* **Uncategorized**
117118
* `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower)
118119
* `B` [Square Matrix Rotation](src/algorithms/uncategorized/square-matrix-rotation) - in-place algorithm
119120
* `B` [Jump Game](src/algorithms/uncategorized/jump-game) - backtracking, dynamic programming (top-down + bottom-up) and greedy examples

‎README.zh-CN.md

+3-2
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ _Read this in other languages:_
6969
* [归并排序](src/algorithms/sorting/merge-sort)
7070
* [快速排序](src/algorithms/sorting/quick-sort)
7171
* [希尔排序](src/algorithms/sorting/shell-sort)
72-
* ****
72+
* ****
7373
* [深度优先搜索](src/algorithms/tree/depth-first-search) (DFS)
7474
* [广度优先搜索](src/algorithms/tree/breadth-first-search) (BFS)
7575
* ****
@@ -87,7 +87,8 @@ _Read this in other languages:_
8787
* [哈密顿图](src/algorithms/graph/hamiltonian-cycle) - 恰好访问每个顶点一次
8888
* [强连通分量](src/algorithms/graph/strongly-connected-components) - Kosaraju算法
8989
* [旅行推销员问题](src/algorithms/graph/travelling-salesman) - 尽可能以最短的路线访问每个城市并返回原始城市
90-
* **未分类**
90+
* [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - 一次循环可以找出所有顶点之间的最短路径
91+
* **未分类**
9192
* [汉诺塔](src/algorithms/uncategorized/hanoi-tower)
9293
* [八皇后问题](src/algorithms/uncategorized/n-queens)
9394
* [骑士巡逻](src/algorithms/uncategorized/knight-tour)

‎README.zh-TW.md

+3-2
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ _Read this in other languages:_
6868
* [合併排序](src/algorithms/sorting/merge-sort)
6969
* [快速排序](src/algorithms/sorting/quick-sort)
7070
* [希爾排序](src/algorithms/sorting/shell-sort)
71-
* ****
71+
* ****
7272
* [深度優先搜尋](src/algorithms/tree/depth-first-search) (DFS)
7373
* [廣度優先搜尋](src/algorithms/tree/breadth-first-search) (BFS)
7474
* ****
@@ -86,7 +86,8 @@ _Read this in other languages:_
8686
* [漢彌爾頓環](src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
8787
* [強連通組件](src/algorithms/graph/strongly-connected-components) - Kosaraju's algorithm
8888
* [旅行推銷員問題](src/algorithms/graph/travelling-salesman) - shortest possible route that visits each city and returns to the origin city
89-
* **未分類**
89+
* [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - 一次循环可以找出所有頂點之间的最短路徑
90+
* **未分類**
9091
* [河內塔](src/algorithms/uncategorized/hanoi-tower)
9192
* [N-皇后問題](src/algorithms/uncategorized/n-queens)
9293
* [騎士走棋盤](src/algorithms/uncategorized/knight-tour)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
# Floyd–Warshall algorithm
2+
3+
## References
4+
5+
- [Wikipedia](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,121 @@
1+
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
2+
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
3+
import Graph from '../../../../data-structures/graph/Graph';
4+
import floydWarshall from '../floydWarshall';
5+
6+
describe('floydWarshall', () => {
7+
it('should find minimum paths to all vertices for undirected graph', () => {
8+
const vertexA = new GraphVertex('A');
9+
const vertexB = new GraphVertex('B');
10+
const vertexC = new GraphVertex('C');
11+
const vertexD = new GraphVertex('D');
12+
const vertexE = new GraphVertex('E');
13+
const vertexF = new GraphVertex('F');
14+
const vertexG = new GraphVertex('G');
15+
const vertexH = new GraphVertex('H');
16+
17+
const edgeAB = new GraphEdge(vertexA, vertexB, 4);
18+
const edgeAE = new GraphEdge(vertexA, vertexE, 7);
19+
const edgeAC = new GraphEdge(vertexA, vertexC, 3);
20+
const edgeBC = new GraphEdge(vertexB, vertexC, 6);
21+
const edgeBD = new GraphEdge(vertexB, vertexD, 5);
22+
const edgeEC = new GraphEdge(vertexE, vertexC, 8);
23+
const edgeED = new GraphEdge(vertexE, vertexD, 2);
24+
const edgeDC = new GraphEdge(vertexD, vertexC, 11);
25+
const edgeDG = new GraphEdge(vertexD, vertexG, 10);
26+
const edgeDF = new GraphEdge(vertexD, vertexF, 2);
27+
const edgeFG = new GraphEdge(vertexF, vertexG, 3);
28+
const edgeEG = new GraphEdge(vertexE, vertexG, 5);
29+
30+
const graph = new Graph();
31+
graph
32+
.addVertex(vertexH)
33+
.addEdge(edgeAB)
34+
.addEdge(edgeAE)
35+
.addEdge(edgeAC)
36+
.addEdge(edgeBC)
37+
.addEdge(edgeBD)
38+
.addEdge(edgeEC)
39+
.addEdge(edgeED)
40+
.addEdge(edgeDC)
41+
.addEdge(edgeDG)
42+
.addEdge(edgeDF)
43+
.addEdge(edgeFG)
44+
.addEdge(edgeEG);
45+
46+
const { distances, previousVertices } = floydWarshall(graph);
47+
48+
const vertices = graph.getAllVertices();
49+
const vertexAIndex = vertices.indexOf(vertexA);
50+
const vl = vertices.length;
51+
52+
expect(distances[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity);
53+
expect(distances[vertexAIndex][vertexAIndex][vl]).toBe(0);
54+
expect(distances[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(4);
55+
expect(distances[vertexAIndex][vertices.indexOf(vertexE)][vl]).toBe(7);
56+
expect(distances[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(3);
57+
expect(distances[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(9);
58+
expect(distances[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(12);
59+
expect(distances[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(11);
60+
61+
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(vertexD);
62+
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexB);
63+
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexA);
64+
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(vertexE);
65+
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA);
66+
expect(previousVertices[vertexAIndex][vertexAIndex][vl]).toBe(null);
67+
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(null);
68+
});
69+
70+
it('should find minimum paths to all vertices for directed graph with negative edge weights', () => {
71+
const vertexS = new GraphVertex('S');
72+
const vertexE = new GraphVertex('E');
73+
const vertexA = new GraphVertex('A');
74+
const vertexD = new GraphVertex('D');
75+
const vertexB = new GraphVertex('B');
76+
const vertexC = new GraphVertex('C');
77+
const vertexH = new GraphVertex('H');
78+
79+
const edgeSE = new GraphEdge(vertexS, vertexE, 8);
80+
const edgeSA = new GraphEdge(vertexS, vertexA, 10);
81+
const edgeED = new GraphEdge(vertexE, vertexD, 1);
82+
const edgeDA = new GraphEdge(vertexD, vertexA, -4);
83+
const edgeDC = new GraphEdge(vertexD, vertexC, -1);
84+
const edgeAC = new GraphEdge(vertexA, vertexC, 2);
85+
const edgeCB = new GraphEdge(vertexC, vertexB, -2);
86+
const edgeBA = new GraphEdge(vertexB, vertexA, 1);
87+
88+
const graph = new Graph(true);
89+
graph
90+
.addVertex(vertexH)
91+
.addEdge(edgeSE)
92+
.addEdge(edgeSA)
93+
.addEdge(edgeED)
94+
.addEdge(edgeDA)
95+
.addEdge(edgeDC)
96+
.addEdge(edgeAC)
97+
.addEdge(edgeCB)
98+
.addEdge(edgeBA);
99+
100+
const { distances, previousVertices } = floydWarshall(graph);
101+
102+
const vertices = graph.getAllVertices();
103+
const vertexSIndex = vertices.indexOf(vertexS);
104+
const vl = vertices.length;
105+
106+
expect(distances[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity);
107+
expect(distances[vertexSIndex][vertexSIndex][vl]).toBe(0);
108+
expect(distances[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(5);
109+
expect(distances[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(5);
110+
expect(distances[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(7);
111+
expect(distances[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(9);
112+
expect(distances[vertexSIndex][vertices.indexOf(vertexE)][vl]).toBe(8);
113+
114+
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(null);
115+
expect(previousVertices[vertexSIndex][vertexSIndex][vl]).toBe(null);
116+
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexC);
117+
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA);
118+
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(vertexD);
119+
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexE);
120+
});
121+
});
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
export default function floydWarshall(graph) {
2+
const vertices = graph.getAllVertices();
3+
4+
// Three dimension matrices.
5+
const distances = [];
6+
const previousVertices = [];
7+
8+
// There are k vertices, loop from 0 to k.
9+
for (let k = 0; k <= vertices.length; k += 1) {
10+
// Path starts from vertex i.
11+
vertices.forEach((vertex, i) => {
12+
if (k === 0) {
13+
distances[i] = [];
14+
previousVertices[i] = [];
15+
}
16+
17+
// Path ends to vertex j.
18+
vertices.forEach((endVertex, j) => {
19+
if (k === 0) {
20+
// Initialize distance and previousVertices array
21+
distances[i][j] = [];
22+
previousVertices[i][j] = [];
23+
24+
if (vertex === endVertex) {
25+
// Distance to self as 0
26+
distances[i][j][k] = 0;
27+
// Previous vertex to self as null
28+
previousVertices[i][j][k] = null;
29+
} else {
30+
const edge = graph.findEdge(vertex, endVertex);
31+
if (edge) {
32+
// There is an edge from vertex i to vertex j.
33+
// Save distance and previous vertex.
34+
distances[i][j][k] = edge.weight;
35+
previousVertices[i][j][k] = vertex;
36+
} else {
37+
distances[i][j][k] = Infinity;
38+
previousVertices[i][j][k] = null;
39+
}
40+
}
41+
} else {
42+
// Compare distance from i to j, with distance from i to k - 1 and then from k - 1 to j.
43+
// Save the shortest distance and previous vertex
44+
// distance[i][j][k] = min( distance[i][k - 1][k - 1], distance[k - 1][j][k - 1] )
45+
if (distances[i][j][k - 1] > distances[i][k - 1][k - 1] + distances[k - 1][j][k - 1]) {
46+
distances[i][j][k] = distances[i][k - 1][k - 1] + distances[k - 1][j][k - 1];
47+
previousVertices[i][j][k] = previousVertices[k - 1][j][k - 1];
48+
} else {
49+
distances[i][j][k] = distances[i][j][k - 1];
50+
previousVertices[i][j][k] = previousVertices[i][j][k - 1];
51+
}
52+
}
53+
});
54+
});
55+
}
56+
57+
// Shortest distance from x to y: distance[x][y][k]
58+
// Previous vertex when shortest distance from x to y: previousVertices[x][y][k]
59+
return { distances, previousVertices };
60+
}

0 commit comments

Comments
 (0)
Please sign in to comment.