use core::borrow::Borrow; use core::cmp::Ordering; use core::fmt::Debug; use core::hash::{Hash, Hasher}; use core::iter::{FromIterator, FusedIterator, Peekable}; use core::marker::PhantomData; use core::ops::Bound::{Excluded, Included, Unbounded}; use core::ops::{Index, RangeBounds}; use core::{fmt, mem, ptr}; use super::node::{self, marker, ForceResult::*, Handle, InsertResult::*, NodeRef}; use super::search::{self, SearchResult::*}; use super::unwrap_unchecked; use Entry::*; use UnderflowResult::*; /// A map based on a B-Tree. /// /// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing /// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal /// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of /// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this /// is done is *very* inefficient for modern computer architectures. In particular, every element /// is stored in its own individually heap-allocated node. This means that every single insertion /// triggers a heap-allocation, and every single comparison should be a cache-miss. Since these /// are both notably expensive things to do in practice, we are forced to at very least reconsider /// the BST strategy. /// /// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing /// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in /// searches. However, this does mean that searches will have to do *more* comparisons on average. /// The precise number of comparisons depends on the node search strategy used. For optimal cache /// efficiency, one could search the nodes linearly. For optimal comparisons, one could search /// the node using binary search. As a compromise, one could also perform a linear search /// that initially only checks every i<sup>th</sup> element for some choice of i. /// /// Currently, our implementation simply performs naive linear search. This provides excellent /// performance on *small* nodes of elements which are cheap to compare. However in the future we /// would like to further explore choosing the optimal search strategy based on the choice of B, /// and possibly other factors. Using linear search, searching for a random element is expected /// to take O(B log<sub>B</sub>n) comparisons, which is generally worse than a BST. In practice, /// however, performance is excellent. /// /// It is a logic error for a key to be modified in such a way that the key's ordering relative to /// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is /// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. /// /// [`Ord`]: ../../std/cmp/trait.Ord.html /// [`Cell`]: ../../std/cell/struct.Cell.html /// [`RefCell`]: ../../std/cell/struct.RefCell.html /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// // type inference lets us omit an explicit type signature (which /// // would be `BTreeMap<&str, &str>` in this example). /// let mut movie_reviews = BTreeMap::new(); /// /// // review some movies. /// movie_reviews.insert("Office Space", "Deals with real issues in the workplace."); /// movie_reviews.insert("Pulp Fiction", "Masterpiece."); /// movie_reviews.insert("The Godfather", "Very enjoyable."); /// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot."); /// /// // check for a specific one. /// if !movie_reviews.contains_key("Les Misérables") { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// movie_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// movie_reviews.remove("The Blues Brothers"); /// /// // look up the values associated with some keys. /// let to_find = ["Up!", "Office Space"]; /// for movie in &to_find { /// match movie_reviews.get(movie) { /// Some(review) => println!("{}: {}", movie, review), /// None => println!("{} is unreviewed.", movie) /// } /// } /// /// // Look up the value for a key (will panic if the key is not found). /// println!("Movie review: {}", movie_reviews["Office Space"]); /// /// // iterate over everything. /// for (movie, review) in &movie_reviews { /// println!("{}: \"{}\"", movie, review); /// } /// ``` /// /// `BTreeMap` also implements an [`Entry API`](#method.entry), which allows /// for more complex methods of getting, setting, updating and removing keys and /// their values: /// /// ``` /// use std::collections::BTreeMap; /// /// // type inference lets us omit an explicit type signature (which /// // would be `BTreeMap<&str, u8>` in this example). /// let mut player_stats = BTreeMap::new(); /// /// fn random_stat_buff() -> u8 { /// // could actually return some random value here - let's just return /// // some fixed value for now /// 42 /// } /// /// // insert a key only if it doesn't already exist /// player_stats.entry("health").or_insert(100); /// /// // insert a key using a function that provides a new value only if it /// // doesn't already exist /// player_stats.entry("defence").or_insert_with(random_stat_buff); /// /// // update a key, guarding against the key possibly not being set /// let stat = player_stats.entry("attack").or_insert(100); /// *stat += random_stat_buff(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct BTreeMap<K, V> { root: Option<node::Root<K, V>>, length: usize, } #[stable(feature = "btree_drop", since = "1.7.0")] unsafe impl<#[may_dangle] K, #[may_dangle] V> Drop for BTreeMap<K, V> { fn drop(&mut self) { unsafe { drop(ptr::read(self).into_iter()); } } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> { fn clone(&self) -> BTreeMap<K, V> { fn clone_subtree<'a, K: Clone, V: Clone>( node: node::NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>, ) -> BTreeMap<K, V> where K: 'a, V: 'a, { match node.force() { Leaf(leaf) => { let mut out_tree = BTreeMap { root: Some(node::Root::new_leaf()), length: 0 }; { let root = out_tree.root.as_mut().unwrap(); let mut out_node = match root.as_mut().force() { Leaf(leaf) => leaf, Internal(_) => unreachable!(), }; let mut in_edge = leaf.first_edge(); while let Ok(kv) = in_edge.right_kv() { let (k, v) = kv.into_kv(); in_edge = kv.right_edge(); out_node.push(k.clone(), v.clone()); out_tree.length += 1; } } out_tree } Internal(internal) => { let mut out_tree = clone_subtree(internal.first_edge().descend()); out_tree.ensure_root_is_owned(); { // Ideally we'd use the return of ensure_root_is_owned // instead of re-unwrapping here but unfortunately that // borrows all of out_tree and we need access to the // length below. let mut out_node = out_tree.root.as_mut().unwrap().push_level(); let mut in_edge = internal.first_edge(); while let Ok(kv) = in_edge.right_kv() { let (k, v) = kv.into_kv(); in_edge = kv.right_edge(); let k = (*k).clone(); let v = (*v).clone(); let subtree = clone_subtree(in_edge.descend()); // We can't destructure subtree directly // because BTreeMap implements Drop let (subroot, sublength) = unsafe { let root = ptr::read(&subtree.root); let length = subtree.length; mem::forget(subtree); (root, length) }; out_node.push(k, v, subroot.unwrap_or_else(node::Root::new_leaf)); out_tree.length += 1 + sublength; } } out_tree } } } if self.is_empty() { // Ideally we'd call `BTreeMap::new` here, but that has the `K: // Ord` constraint, which this method lacks. BTreeMap { root: None, length: 0 } } else { clone_subtree(self.root.as_ref().unwrap().as_ref()) } } fn clone_from(&mut self, other: &Self) { BTreeClone::clone_from(self, other); } } trait BTreeClone { fn clone_from(&mut self, other: &Self); } impl<K: Clone, V: Clone> BTreeClone for BTreeMap<K, V> { default fn clone_from(&mut self, other: &Self) { *self = other.clone(); } } impl<K: Clone + Ord, V: Clone> BTreeClone for BTreeMap<K, V> { fn clone_from(&mut self, other: &Self) { // This truncates `self` to `other.len()` by calling `split_off` on // the first key after `other.len()` elements if it exists. let split_off_key = if self.len() > other.len() { let diff = self.len() - other.len(); if diff <= other.len() { self.iter().nth_back(diff - 1).map(|pair| (*pair.0).clone()) } else { self.iter().nth(other.len()).map(|pair| (*pair.0).clone()) } } else { None }; if let Some(key) = split_off_key { self.split_off(&key); } let mut siter = self.range_mut(..); let mut oiter = other.iter(); // After truncation, `self` is at most as long as `other` so this loop // replaces every key-value pair in `self`. Since `oiter` is in sorted // order and the structure of the `BTreeMap` stays the same, // the BTree invariants are maintained at the end of the loop. while !siter.is_empty() { if let Some((ok, ov)) = oiter.next() { // SAFETY: This is safe because `siter` is nonempty. let (sk, sv) = unsafe { siter.next_unchecked() }; sk.clone_from(ok); sv.clone_from(ov); } else { break; } } // If `other` is longer than `self`, the remaining elements are inserted. self.extend(oiter.map(|(k, v)| ((*k).clone(), (*v).clone()))); } } impl<K, Q: ?Sized> super::Recover<Q> for BTreeMap<K, ()> where K: Borrow<Q> + Ord, Q: Ord, { type Key = K; fn get(&self, key: &Q) -> Option<&K> { match search::search_tree(self.root.as_ref()?.as_ref(), key) { Found(handle) => Some(handle.into_kv().0), GoDown(_) => None, } } fn take(&mut self, key: &Q) -> Option<K> { match search::search_tree(self.root.as_mut()?.as_mut(), key) { Found(handle) => Some( OccupiedEntry { handle, length: &mut self.length, _marker: PhantomData } .remove_kv() .0, ), GoDown(_) => None, } } fn replace(&mut self, key: K) -> Option<K> { self.ensure_root_is_owned(); match search::search_tree::<marker::Mut<'_>, K, (), K>(self.root.as_mut()?.as_mut(), &key) { Found(handle) => Some(mem::replace(handle.into_kv_mut().0, key)), GoDown(handle) => { VacantEntry { key, handle, length: &mut self.length, _marker: PhantomData } .insert(()); None } } } } /// An iterator over the entries of a `BTreeMap`. /// /// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`iter`]: struct.BTreeMap.html#method.iter /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, K: 'a, V: 'a> { range: Range<'a, K, V>, length: usize, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A mutable iterator over the entries of a `BTreeMap`. /// /// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`iter_mut`]: struct.BTreeMap.html#method.iter_mut /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug)] pub struct IterMut<'a, K: 'a, V: 'a> { range: RangeMut<'a, K, V>, length: usize, } /// An owning iterator over the entries of a `BTreeMap`. /// /// This `struct` is created by the [`into_iter`] method on [`BTreeMap`] /// (provided by the `IntoIterator` trait). See its documentation for more. /// /// [`into_iter`]: struct.BTreeMap.html#method.into_iter /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter<K, V> { front: Option<Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>>, back: Option<Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>>, length: usize, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let range = Range { front: self.front.as_ref().map(|f| f.reborrow()), back: self.back.as_ref().map(|b| b.reborrow()), }; f.debug_list().entries(range).finish() } } /// An iterator over the keys of a `BTreeMap`. /// /// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`keys`]: struct.BTreeMap.html#method.keys /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Keys<'a, K: 'a, V: 'a> { inner: Iter<'a, K, V>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// An iterator over the values of a `BTreeMap`. /// /// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`values`]: struct.BTreeMap.html#method.values /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Values<'a, K: 'a, V: 'a> { inner: Iter<'a, K, V>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A mutable iterator over the values of a `BTreeMap`. /// /// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`values_mut`]: struct.BTreeMap.html#method.values_mut /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "map_values_mut", since = "1.10.0")] #[derive(Debug)] pub struct ValuesMut<'a, K: 'a, V: 'a> { inner: IterMut<'a, K, V>, } /// An iterator over a sub-range of entries in a `BTreeMap`. /// /// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`range`]: struct.BTreeMap.html#method.range /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "btree_range", since = "1.17.0")] pub struct Range<'a, K: 'a, V: 'a> { front: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>, back: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A mutable iterator over a sub-range of entries in a `BTreeMap`. /// /// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its /// documentation for more. /// /// [`range_mut`]: struct.BTreeMap.html#method.range_mut /// [`BTreeMap`]: struct.BTreeMap.html #[stable(feature = "btree_range", since = "1.17.0")] pub struct RangeMut<'a, K: 'a, V: 'a> { front: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>, back: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>, // Be invariant in `K` and `V` _marker: PhantomData<&'a mut (K, V)>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let range = Range { front: self.front.as_ref().map(|f| f.reborrow()), back: self.back.as_ref().map(|b| b.reborrow()), }; f.debug_list().entries(range).finish() } } /// A view into a single entry in a map, which may either be vacant or occupied. /// /// This `enum` is constructed from the [`entry`] method on [`BTreeMap`]. /// /// [`BTreeMap`]: struct.BTreeMap.html /// [`entry`]: struct.BTreeMap.html#method.entry #[stable(feature = "rust1", since = "1.0.0")] pub enum Entry<'a, K: 'a, V: 'a> { /// A vacant entry. #[stable(feature = "rust1", since = "1.0.0")] Vacant(#[stable(feature = "rust1", since = "1.0.0")] VacantEntry<'a, K, V>), /// An occupied entry. #[stable(feature = "rust1", since = "1.0.0")] Occupied(#[stable(feature = "rust1", since = "1.0.0")] OccupiedEntry<'a, K, V>), } #[stable(feature = "debug_btree_map", since = "1.12.0")] impl<K: Debug + Ord, V: Debug> Debug for Entry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(), Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(), } } } /// A view into a vacant entry in a `BTreeMap`. /// It is part of the [`Entry`] enum. /// /// [`Entry`]: enum.Entry.html #[stable(feature = "rust1", since = "1.0.0")] pub struct VacantEntry<'a, K: 'a, V: 'a> { key: K, handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, length: &'a mut usize, // Be invariant in `K` and `V` _marker: PhantomData<&'a mut (K, V)>, } #[stable(feature = "debug_btree_map", since = "1.12.0")] impl<K: Debug + Ord, V> Debug for VacantEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("VacantEntry").field(self.key()).finish() } } /// A view into an occupied entry in a `BTreeMap`. /// It is part of the [`Entry`] enum. /// /// [`Entry`]: enum.Entry.html #[stable(feature = "rust1", since = "1.0.0")] pub struct OccupiedEntry<'a, K: 'a, V: 'a> { handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV>, length: &'a mut usize, // Be invariant in `K` and `V` _marker: PhantomData<&'a mut (K, V)>, } #[stable(feature = "debug_btree_map", since = "1.12.0")] impl<K: Debug + Ord, V: Debug> Debug for OccupiedEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OccupiedEntry").field("key", self.key()).field("value", self.get()).finish() } } // An iterator for merging two sorted sequences into one struct MergeIter<K, V, I: Iterator<Item = (K, V)>> { left: Peekable<I>, right: Peekable<I>, } impl<K: Ord, V> BTreeMap<K, V> { /// Makes a new empty BTreeMap with a reasonable choice for B. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// /// // entries can now be inserted into the empty map /// map.insert(1, "a"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> BTreeMap<K, V> { BTreeMap { root: None, length: 0 } } /// Clears the map, removing all elements. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// a.insert(1, "a"); /// a.clear(); /// assert!(a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { *self = BTreeMap::new(); } /// Returns a reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but the ordering /// on the borrowed form *must* match the ordering on the key type. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get(&1), Some(&"a")); /// assert_eq!(map.get(&2), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V> where K: Borrow<Q>, Q: Ord, { match search::search_tree(self.root.as_ref()?.as_ref(), key) { Found(handle) => Some(handle.into_kv().1), GoDown(_) => None, } } /// Returns the key-value pair corresponding to the supplied key. /// /// The supplied key may be any borrowed form of the map's key type, but the ordering /// on the borrowed form *must* match the ordering on the key type. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); /// assert_eq!(map.get_key_value(&2), None); /// ``` #[stable(feature = "map_get_key_value", since = "1.40.0")] pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> where K: Borrow<Q>, Q: Ord, { match search::search_tree(self.root.as_ref()?.as_ref(), k) { Found(handle) => Some(handle.into_kv()), GoDown(_) => None, } } /// Returns the first key-value pair in the map. /// The key in this pair is the minimum key in the map. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(map_first_last)] /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// assert_eq!(map.first_key_value(), None); /// map.insert(1, "b"); /// map.insert(2, "a"); /// assert_eq!(map.first_key_value(), Some((&1, &"b"))); /// ``` #[unstable(feature = "map_first_last", issue = "62924")] pub fn first_key_value<T: ?Sized>(&self) -> Option<(&K, &V)> where T: Ord, K: Borrow<T>, { let front = self.root.as_ref()?.as_ref().first_leaf_edge(); front.right_kv().ok().map(Handle::into_kv) } /// Returns the first entry in the map for in-place manipulation. /// The key of this entry is the minimum key in the map. /// /// # Examples /// /// Contrived way to `clear` a map: /// /// ``` /// #![feature(map_first_last)] /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// map.insert(2, "b"); /// while let Some(entry) = map.first_entry() { /// let (key, val) = entry.remove_entry(); /// assert!(!map.contains_key(&key)); /// } /// ``` #[unstable(feature = "map_first_last", issue = "62924")] pub fn first_entry<T: ?Sized>(&mut self) -> Option<OccupiedEntry<'_, K, V>> where T: Ord, K: Borrow<T>, { let front = self.root.as_mut()?.as_mut().first_leaf_edge(); if let Ok(kv) = front.right_kv() { Some(OccupiedEntry { handle: kv.forget_node_type(), length: &mut self.length, _marker: PhantomData, }) } else { None } } /// Returns the last key-value pair in the map. /// The key in this pair is the maximum key in the map. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(map_first_last)] /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "b"); /// map.insert(2, "a"); /// assert_eq!(map.last_key_value(), Some((&2, &"a"))); /// ``` #[unstable(feature = "map_first_last", issue = "62924")] pub fn last_key_value<T: ?Sized>(&self) -> Option<(&K, &V)> where T: Ord, K: Borrow<T>, { let back = self.root.as_ref()?.as_ref().last_leaf_edge(); back.left_kv().ok().map(Handle::into_kv) } /// Returns the last entry in the map for in-place manipulation. /// The key of this entry is the maximum key in the map. /// /// # Examples /// /// Contrived way to `clear` a map: /// /// ``` /// #![feature(map_first_last)] /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// map.insert(2, "b"); /// while let Some(entry) = map.last_entry() { /// let (key, val) = entry.remove_entry(); /// assert!(!map.contains_key(&key)); /// } /// ``` #[unstable(feature = "map_first_last", issue = "62924")] pub fn last_entry<T: ?Sized>(&mut self) -> Option<OccupiedEntry<'_, K, V>> where T: Ord, K: Borrow<T>, { let back = self.root.as_mut()?.as_mut().last_leaf_edge(); if let Ok(kv) = back.left_kv() { Some(OccupiedEntry { handle: kv.forget_node_type(), length: &mut self.length, _marker: PhantomData, }) } else { None } } /// Returns `true` if the map contains a value for the specified key. /// /// The key may be any borrowed form of the map's key type, but the ordering /// on the borrowed form *must* match the ordering on the key type. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.contains_key(&1), true); /// assert_eq!(map.contains_key(&2), false); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool where K: Borrow<Q>, Q: Ord, { self.get(key).is_some() } /// Returns a mutable reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but the ordering /// on the borrowed form *must* match the ordering on the key type. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// if let Some(x) = map.get_mut(&1) { /// *x = "b"; /// } /// assert_eq!(map[&1], "b"); /// ``` // See `get` for implementation notes, this is basically a copy-paste with mut's added #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V> where K: Borrow<Q>, Q: Ord, { match search::search_tree(self.root.as_mut()?.as_mut(), key) { Found(handle) => Some(handle.into_kv_mut().1), GoDown(_) => None, } } /// Inserts a key-value pair into the map. /// /// If the map did not have this key present, `None` is returned. /// /// If the map did have this key present, the value is updated, and the old /// value is returned. The key is not updated, though; this matters for /// types that can be `==` without being identical. See the [module-level /// documentation] for more. /// /// [module-level documentation]: index.html#insert-and-complex-keys /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// assert_eq!(map.insert(37, "a"), None); /// assert_eq!(map.is_empty(), false); /// /// map.insert(37, "b"); /// assert_eq!(map.insert(37, "c"), Some("b")); /// assert_eq!(map[&37], "c"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, key: K, value: V) -> Option<V> { match self.entry(key) { Occupied(mut entry) => Some(entry.insert(value)), Vacant(entry) => { entry.insert(value); None } } } /// Removes a key from the map, returning the value at the key if the key /// was previously in the map. /// /// The key may be any borrowed form of the map's key type, but the ordering /// on the borrowed form *must* match the ordering on the key type. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove(&1), Some("a")); /// assert_eq!(map.remove(&1), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> where K: Borrow<Q>, Q: Ord, { self.remove_entry(key).map(|(_, v)| v) } /// Removes a key from the map, returning the stored key and value if the key /// was previously in the map. /// /// The key may be any borrowed form of the map's key type, but the ordering /// on the borrowed form *must* match the ordering on the key type. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(btreemap_remove_entry)] /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove_entry(&1), Some((1, "a"))); /// assert_eq!(map.remove_entry(&1), None); /// ``` #[unstable(feature = "btreemap_remove_entry", issue = "66714")] pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)> where K: Borrow<Q>, Q: Ord, { match search::search_tree(self.root.as_mut()?.as_mut(), key) { Found(handle) => Some( OccupiedEntry { handle, length: &mut self.length, _marker: PhantomData } .remove_entry(), ), GoDown(_) => None, } } /// Moves all elements from `other` into `Self`, leaving `other` empty. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// a.insert(1, "a"); /// a.insert(2, "b"); /// a.insert(3, "c"); /// /// let mut b = BTreeMap::new(); /// b.insert(3, "d"); /// b.insert(4, "e"); /// b.insert(5, "f"); /// /// a.append(&mut b); /// /// assert_eq!(a.len(), 5); /// assert_eq!(b.len(), 0); /// /// assert_eq!(a[&1], "a"); /// assert_eq!(a[&2], "b"); /// assert_eq!(a[&3], "d"); /// assert_eq!(a[&4], "e"); /// assert_eq!(a[&5], "f"); /// ``` #[stable(feature = "btree_append", since = "1.11.0")] pub fn append(&mut self, other: &mut Self) { // Do we have to append anything at all? if other.is_empty() { return; } // We can just swap `self` and `other` if `self` is empty. if self.is_empty() { mem::swap(self, other); return; } // First, we merge `self` and `other` into a sorted sequence in linear time. let self_iter = mem::take(self).into_iter(); let other_iter = mem::take(other).into_iter(); let iter = MergeIter { left: self_iter.peekable(), right: other_iter.peekable() }; // Second, we build a tree from the sorted sequence in linear time. self.from_sorted_iter(iter); self.fix_right_edge(); } /// Constructs a double-ended iterator over a sub-range of elements in the map. /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will /// yield elements from min (inclusive) to max (exclusive). /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive /// range from 4 to 10. /// /// # Panics /// /// Panics if range `start > end`. /// Panics if range `start == end` and both bounds are `Excluded`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// use std::ops::Bound::Included; /// /// let mut map = BTreeMap::new(); /// map.insert(3, "a"); /// map.insert(5, "b"); /// map.insert(8, "c"); /// for (&key, &value) in map.range((Included(&4), Included(&8))) { /// println!("{}: {}", key, value); /// } /// assert_eq!(Some((&5, &"b")), map.range(4..).next()); /// ``` #[stable(feature = "btree_range", since = "1.17.0")] pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V> where T: Ord, K: Borrow<T>, R: RangeBounds<T>, { if let Some(root) = &self.root { let root1 = root.as_ref(); let root2 = root.as_ref(); let (f, b) = range_search(root1, root2, range); Range { front: Some(f), back: Some(b) } } else { Range { front: None, back: None } } } /// Constructs a mutable double-ended iterator over a sub-range of elements in the map. /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will /// yield elements from min (inclusive) to max (exclusive). /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive /// range from 4 to 10. /// /// # Panics /// /// Panics if range `start > end`. /// Panics if range `start == end` and both bounds are `Excluded`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, i32> = ["Alice", "Bob", "Carol", "Cheryl"] /// .iter() /// .map(|&s| (s, 0)) /// .collect(); /// for (_, balance) in map.range_mut("B".."Cheryl") { /// *balance += 100; /// } /// for (name, balance) in &map { /// println!("{} => {}", name, balance); /// } /// ``` #[stable(feature = "btree_range", since = "1.17.0")] pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V> where T: Ord, K: Borrow<T>, R: RangeBounds<T>, { if let Some(root) = &mut self.root { let root1 = root.as_mut(); let root2 = unsafe { ptr::read(&root1) }; let (f, b) = range_search(root1, root2, range); RangeMut { front: Some(f), back: Some(b), _marker: PhantomData } } else { RangeMut { front: None, back: None, _marker: PhantomData } } } /// Gets the given key's corresponding entry in the map for in-place manipulation. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut count: BTreeMap<&str, usize> = BTreeMap::new(); /// /// // count the number of occurrences of letters in the vec /// for x in vec!["a","b","a","c","a","b"] { /// *count.entry(x).or_insert(0) += 1; /// } /// /// assert_eq!(count["a"], 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { // FIXME(@porglezomp) Avoid allocating if we don't insert self.ensure_root_is_owned(); match search::search_tree(self.root.as_mut().unwrap().as_mut(), &key) { Found(handle) => { Occupied(OccupiedEntry { handle, length: &mut self.length, _marker: PhantomData }) } GoDown(handle) => { Vacant(VacantEntry { key, handle, length: &mut self.length, _marker: PhantomData }) } } } fn from_sorted_iter<I: Iterator<Item = (K, V)>>(&mut self, iter: I) { self.ensure_root_is_owned(); let mut cur_node = self.root.as_mut().unwrap().as_mut().last_leaf_edge().into_node(); // Iterate through all key-value pairs, pushing them into nodes at the right level. for (key, value) in iter { // Try to push key-value pair into the current leaf node. if cur_node.len() < node::CAPACITY { cur_node.push(key, value); } else { // No space left, go up and push there. let mut open_node; let mut test_node = cur_node.forget_type(); loop { match test_node.ascend() { Ok(parent) => { let parent = parent.into_node(); if parent.len() < node::CAPACITY { // Found a node with space left, push here. open_node = parent; break; } else { // Go up again. test_node = parent.forget_type(); } } Err(node) => { // We are at the top, create a new root node and push there. open_node = node.into_root_mut().push_level(); break; } } } // Push key-value pair and new right subtree. let tree_height = open_node.height() - 1; let mut right_tree = node::Root::new_leaf(); for _ in 0..tree_height { right_tree.push_level(); } open_node.push(key, value, right_tree); // Go down to the right-most leaf again. cur_node = open_node.forget_type().last_leaf_edge().into_node(); } self.length += 1; } } fn fix_right_edge(&mut self) { // Handle underfull nodes, start from the top. let mut cur_node = self.root.as_mut().unwrap().as_mut(); while let Internal(internal) = cur_node.force() { // Check if right-most child is underfull. let mut last_edge = internal.last_edge(); let right_child_len = last_edge.reborrow().descend().len(); if right_child_len < node::MIN_LEN { // We need to steal. let mut last_kv = match last_edge.left_kv() { Ok(left) => left, Err(_) => unreachable!(), }; last_kv.bulk_steal_left(node::MIN_LEN - right_child_len); last_edge = last_kv.right_edge(); } // Go further down. cur_node = last_edge.descend(); } } /// Splits the collection into two at the given key. Returns everything after the given key, /// including the key. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// a.insert(1, "a"); /// a.insert(2, "b"); /// a.insert(3, "c"); /// a.insert(17, "d"); /// a.insert(41, "e"); /// /// let b = a.split_off(&3); /// /// assert_eq!(a.len(), 2); /// assert_eq!(b.len(), 3); /// /// assert_eq!(a[&1], "a"); /// assert_eq!(a[&2], "b"); /// /// assert_eq!(b[&3], "c"); /// assert_eq!(b[&17], "d"); /// assert_eq!(b[&41], "e"); /// ``` #[stable(feature = "btree_split_off", since = "1.11.0")] pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self where K: Borrow<Q>, { if self.is_empty() { return Self::new(); } let total_num = self.len(); let mut right = Self::new(); let right_root = right.ensure_root_is_owned(); for _ in 0..(self.root.as_ref().unwrap().as_ref().height()) { right_root.push_level(); } { let mut left_node = self.root.as_mut().unwrap().as_mut(); let mut right_node = right.root.as_mut().unwrap().as_mut(); loop { let mut split_edge = match search::search_node(left_node, key) { // key is going to the right tree Found(handle) => handle.left_edge(), GoDown(handle) => handle, }; split_edge.move_suffix(&mut right_node); match (split_edge.force(), right_node.force()) { (Internal(edge), Internal(node)) => { left_node = edge.descend(); right_node = node.first_edge().descend(); } (Leaf(_), Leaf(_)) => { break; } _ => { unreachable!(); } } } } self.fix_right_border(); right.fix_left_border(); if self.root.as_ref().unwrap().as_ref().height() < right.root.as_ref().unwrap().as_ref().height() { self.recalc_length(); right.length = total_num - self.len(); } else { right.recalc_length(); self.length = total_num - right.len(); } right } /// Creates an iterator which uses a closure to determine if an element should be removed. /// /// If the closure returns true, the element is removed from the map and yielded. /// If the closure returns false, or panics, the element remains in the map and will not be /// yielded. /// /// Note that `drain_filter` lets you mutate every value in the filter closure, regardless of /// whether you choose to keep or remove it. /// /// If the iterator is only partially consumed or not consumed at all, each of the remaining /// elements will still be subjected to the closure and removed and dropped if it returns true. /// /// It is unspecified how many more elements will be subjected to the closure /// if a panic occurs in the closure, or a panic occurs while dropping an element, /// or if the `DrainFilter` value is leaked. /// /// # Examples /// /// Splitting a map into even and odd keys, reusing the original map: /// /// ``` /// #![feature(btree_drain_filter)] /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect(); /// let evens: BTreeMap<_, _> = map.drain_filter(|k, _v| k % 2 == 0).collect(); /// let odds = map; /// assert_eq!(evens.keys().copied().collect::<Vec<_>>(), vec![0, 2, 4, 6]); /// assert_eq!(odds.keys().copied().collect::<Vec<_>>(), vec![1, 3, 5, 7]); /// ``` #[unstable(feature = "btree_drain_filter", issue = "70530")] pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool, { DrainFilter { pred, inner: self.drain_filter_inner() } } pub(super) fn drain_filter_inner(&mut self) -> DrainFilterInner<'_, K, V> { let front = self.root.as_mut().map(|r| r.as_mut().first_leaf_edge()); DrainFilterInner { length: &mut self.length, cur_leaf_edge: front } } /// Calculates the number of elements if it is incorrect. fn recalc_length(&mut self) { fn dfs<'a, K, V>(node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>) -> usize where K: 'a, V: 'a, { let mut res = node.len(); if let Internal(node) = node.force() { let mut edge = node.first_edge(); loop { res += dfs(edge.reborrow().descend()); match edge.right_kv() { Ok(right_kv) => { edge = right_kv.right_edge(); } Err(_) => { break; } } } } res } self.length = dfs(self.root.as_ref().unwrap().as_ref()); } /// Removes empty levels on the top. fn fix_top(&mut self) { loop { { let node = self.root.as_ref().unwrap().as_ref(); if node.height() == 0 || node.len() > 0 { break; } } self.root.as_mut().unwrap().pop_level(); } } fn fix_right_border(&mut self) { self.fix_top(); { let mut cur_node = self.root.as_mut().unwrap().as_mut(); while let Internal(node) = cur_node.force() { let mut last_kv = node.last_kv(); if last_kv.can_merge() { cur_node = last_kv.merge().descend(); } else { let right_len = last_kv.reborrow().right_edge().descend().len(); // `MINLEN + 1` to avoid readjust if merge happens on the next level. if right_len < node::MIN_LEN + 1 { last_kv.bulk_steal_left(node::MIN_LEN + 1 - right_len); } cur_node = last_kv.right_edge().descend(); } } } self.fix_top(); } /// The symmetric clone of `fix_right_border`. fn fix_left_border(&mut self) { self.fix_top(); { let mut cur_node = self.root.as_mut().unwrap().as_mut(); while let Internal(node) = cur_node.force() { let mut first_kv = node.first_kv(); if first_kv.can_merge() { cur_node = first_kv.merge().descend(); } else { let left_len = first_kv.reborrow().left_edge().descend().len(); if left_len < node::MIN_LEN + 1 { first_kv.bulk_steal_right(node::MIN_LEN + 1 - left_len); } cur_node = first_kv.left_edge().descend(); } } } self.fix_top(); } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K: 'a, V: 'a> IntoIterator for &'a BTreeMap<K, V> { type Item = (&'a K, &'a V); type IntoIter = Iter<'a, K, V>; fn into_iter(self) -> Iter<'a, K, V> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> { type Item = (&'a K, &'a V); fn next(&mut self) -> Option<(&'a K, &'a V)> { if self.length == 0 { None } else { self.length -= 1; unsafe { Some(self.range.next_unchecked()) } } } fn size_hint(&self) -> (usize, Option<usize>) { (self.length, Some(self.length)) } fn last(mut self) -> Option<(&'a K, &'a V)> { self.next_back() } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for Iter<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> { fn next_back(&mut self) -> Option<(&'a K, &'a V)> { if self.length == 0 { None } else { self.length -= 1; unsafe { Some(self.range.next_back_unchecked()) } } } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> ExactSizeIterator for Iter<'_, K, V> { fn len(&self) -> usize { self.length } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> Clone for Iter<'_, K, V> { fn clone(&self) -> Self { Iter { range: self.range.clone(), length: self.length } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K: 'a, V: 'a> IntoIterator for &'a mut BTreeMap<K, V> { type Item = (&'a K, &'a mut V); type IntoIter = IterMut<'a, K, V>; fn into_iter(self) -> IterMut<'a, K, V> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K: 'a, V: 'a> Iterator for IterMut<'a, K, V> { type Item = (&'a K, &'a mut V); fn next(&mut self) -> Option<(&'a K, &'a mut V)> { if self.length == 0 { None } else { self.length -= 1; let (k, v) = unsafe { self.range.next_unchecked() }; Some((k, v)) // coerce k from `&mut K` to `&K` } } fn size_hint(&self) -> (usize, Option<usize>) { (self.length, Some(self.length)) } fn last(mut self) -> Option<(&'a K, &'a mut V)> { self.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K: 'a, V: 'a> DoubleEndedIterator for IterMut<'a, K, V> { fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { if self.length == 0 { None } else { self.length -= 1; let (k, v) = unsafe { self.range.next_back_unchecked() }; Some((k, v)) // coerce k from `&mut K` to `&K` } } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> ExactSizeIterator for IterMut<'_, K, V> { fn len(&self) -> usize { self.length } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for IterMut<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> IntoIterator for BTreeMap<K, V> { type Item = (K, V); type IntoIter = IntoIter<K, V>; fn into_iter(self) -> IntoIter<K, V> { if self.root.is_none() { mem::forget(self); return IntoIter { front: None, back: None, length: 0 }; } let root1 = unsafe { unwrap_unchecked(ptr::read(&self.root)).into_ref() }; let root2 = unsafe { unwrap_unchecked(ptr::read(&self.root)).into_ref() }; let len = self.length; mem::forget(self); IntoIter { front: Some(root1.first_leaf_edge()), back: Some(root2.last_leaf_edge()), length: len, } } } #[stable(feature = "btree_drop", since = "1.7.0")] impl<K, V> Drop for IntoIter<K, V> { fn drop(&mut self) { struct DropGuard<'a, K, V>(&'a mut IntoIter<K, V>); impl<'a, K, V> Drop for DropGuard<'a, K, V> { fn drop(&mut self) { // Continue the same loop we perform below. This only runs when unwinding, so we // don't have to care about panics this time (they'll abort). while let Some(_) = self.0.next() {} unsafe { let mut node = unwrap_unchecked(ptr::read(&self.0.front)).into_node().forget_type(); while let Some(parent) = node.deallocate_and_ascend() { node = parent.into_node().forget_type(); } } } } while let Some(pair) = self.next() { let guard = DropGuard(self); drop(pair); mem::forget(guard); } unsafe { if let Some(front) = ptr::read(&self.front) { let mut node = front.into_node().forget_type(); // Most of the nodes have been deallocated while traversing // but one pile from a leaf up to the root is left standing. while let Some(parent) = node.deallocate_and_ascend() { node = parent.into_node().forget_type(); } } } } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> Iterator for IntoIter<K, V> { type Item = (K, V); fn next(&mut self) -> Option<(K, V)> { if self.length == 0 { None } else { self.length -= 1; Some(unsafe { self.front.as_mut().unwrap().next_unchecked() }) } } fn size_hint(&self) -> (usize, Option<usize>) { (self.length, Some(self.length)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> DoubleEndedIterator for IntoIter<K, V> { fn next_back(&mut self) -> Option<(K, V)> { if self.length == 0 { None } else { self.length -= 1; Some(unsafe { self.back.as_mut().unwrap().next_back_unchecked() }) } } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> ExactSizeIterator for IntoIter<K, V> { fn len(&self) -> usize { self.length } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for IntoIter<K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Keys<'a, K, V> { type Item = &'a K; fn next(&mut self) -> Option<&'a K> { self.inner.next().map(|(k, _)| k) } fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } fn last(mut self) -> Option<&'a K> { self.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> { fn next_back(&mut self) -> Option<&'a K> { self.inner.next_back().map(|(k, _)| k) } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> ExactSizeIterator for Keys<'_, K, V> { fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for Keys<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> Clone for Keys<'_, K, V> { fn clone(&self) -> Self { Keys { inner: self.inner.clone() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Values<'a, K, V> { type Item = &'a V; fn next(&mut self) -> Option<&'a V> { self.inner.next().map(|(_, v)| v) } fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } fn last(mut self) -> Option<&'a V> { self.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> { fn next_back(&mut self) -> Option<&'a V> { self.inner.next_back().map(|(_, v)| v) } } #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> ExactSizeIterator for Values<'_, K, V> { fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for Values<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<K, V> Clone for Values<'_, K, V> { fn clone(&self) -> Self { Values { inner: self.inner.clone() } } } /// An iterator produced by calling `drain_filter` on BTreeMap. #[unstable(feature = "btree_drain_filter", issue = "70530")] pub struct DrainFilter<'a, K, V, F> where K: 'a + Ord, // This Ord bound should be removed before stabilization. V: 'a, F: 'a + FnMut(&K, &mut V) -> bool, { pred: F, inner: DrainFilterInner<'a, K, V>, } pub(super) struct DrainFilterInner<'a, K, V> where K: 'a + Ord, V: 'a, { length: &'a mut usize, cur_leaf_edge: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>, } #[unstable(feature = "btree_drain_filter", issue = "70530")] impl<'a, K, V, F> Drop for DrainFilter<'a, K, V, F> where K: 'a + Ord, V: 'a, F: 'a + FnMut(&K, &mut V) -> bool, { fn drop(&mut self) { self.for_each(drop); } } #[unstable(feature = "btree_drain_filter", issue = "70530")] impl<'a, K, V, F> fmt::Debug for DrainFilter<'a, K, V, F> where K: 'a + fmt::Debug + Ord, V: 'a + fmt::Debug, F: 'a + FnMut(&K, &mut V) -> bool, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("DrainFilter").field(&self.inner.peek()).finish() } } #[unstable(feature = "btree_drain_filter", issue = "70530")] impl<'a, K, V, F> Iterator for DrainFilter<'a, K, V, F> where K: 'a + Ord, V: 'a, F: 'a + FnMut(&K, &mut V) -> bool, { type Item = (K, V); fn next(&mut self) -> Option<(K, V)> { self.inner.next(&mut self.pred) } fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } } impl<'a, K, V> DrainFilterInner<'a, K, V> where K: 'a + Ord, V: 'a, { /// Allow Debug implementations to predict the next element. pub(super) fn peek(&self) -> Option<(&K, &V)> { let edge = self.cur_leaf_edge.as_ref()?; edge.reborrow().next_kv().ok().map(|kv| kv.into_kv()) } unsafe fn next_kv( &mut self, ) -> Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV>> { let edge = self.cur_leaf_edge.as_ref()?; ptr::read(edge).next_kv().ok() } /// Implementation of a typical `DrainFilter::next` method, given the predicate. pub(super) fn next<F>(&mut self, pred: &mut F) -> Option<(K, V)> where F: FnMut(&K, &mut V) -> bool, { while let Some(mut kv) = unsafe { self.next_kv() } { let (k, v) = kv.kv_mut(); if pred(k, v) { *self.length -= 1; let (k, v, leaf_edge_location) = kv.remove_kv_tracking(); self.cur_leaf_edge = Some(leaf_edge_location); return Some((k, v)); } self.cur_leaf_edge = Some(kv.next_leaf_edge()); } None } /// Implementation of a typical `DrainFilter::size_hint` method. pub(super) fn size_hint(&self) -> (usize, Option<usize>) { (0, Some(*self.length)) } } #[unstable(feature = "btree_drain_filter", issue = "70530")] impl<K, V, F> FusedIterator for DrainFilter<'_, K, V, F> where K: Ord, F: FnMut(&K, &mut V) -> bool, { } #[stable(feature = "btree_range", since = "1.17.0")] impl<'a, K, V> Iterator for Range<'a, K, V> { type Item = (&'a K, &'a V); fn next(&mut self) -> Option<(&'a K, &'a V)> { if self.is_empty() { None } else { unsafe { Some(self.next_unchecked()) } } } fn last(mut self) -> Option<(&'a K, &'a V)> { self.next_back() } } #[stable(feature = "map_values_mut", since = "1.10.0")] impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { type Item = &'a mut V; fn next(&mut self) -> Option<&'a mut V> { self.inner.next().map(|(_, v)| v) } fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } fn last(mut self) -> Option<&'a mut V> { self.next_back() } } #[stable(feature = "map_values_mut", since = "1.10.0")] impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> { fn next_back(&mut self) -> Option<&'a mut V> { self.inner.next_back().map(|(_, v)| v) } } #[stable(feature = "map_values_mut", since = "1.10.0")] impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> { fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for ValuesMut<'_, K, V> {} impl<'a, K, V> Range<'a, K, V> { fn is_empty(&self) -> bool { self.front == self.back } unsafe fn next_unchecked(&mut self) -> (&'a K, &'a V) { unwrap_unchecked(self.front.as_mut()).next_unchecked() } } #[stable(feature = "btree_range", since = "1.17.0")] impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> { fn next_back(&mut self) -> Option<(&'a K, &'a V)> { if self.is_empty() { None } else { Some(unsafe { self.next_back_unchecked() }) } } } impl<'a, K, V> Range<'a, K, V> { unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a V) { unwrap_unchecked(self.back.as_mut()).next_back_unchecked() } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for Range<'_, K, V> {} #[stable(feature = "btree_range", since = "1.17.0")] impl<K, V> Clone for Range<'_, K, V> { fn clone(&self) -> Self { Range { front: self.front, back: self.back } } } #[stable(feature = "btree_range", since = "1.17.0")] impl<'a, K, V> Iterator for RangeMut<'a, K, V> { type Item = (&'a K, &'a mut V); fn next(&mut self) -> Option<(&'a K, &'a mut V)> { if self.is_empty() { None } else { let (k, v) = unsafe { self.next_unchecked() }; Some((k, v)) // coerce k from `&mut K` to `&K` } } fn last(mut self) -> Option<(&'a K, &'a mut V)> { self.next_back() } } impl<'a, K, V> RangeMut<'a, K, V> { fn is_empty(&self) -> bool { self.front == self.back } unsafe fn next_unchecked(&mut self) -> (&'a mut K, &'a mut V) { unwrap_unchecked(self.front.as_mut()).next_unchecked() } } #[stable(feature = "btree_range", since = "1.17.0")] impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> { fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { if self.is_empty() { None } else { let (k, v) = unsafe { self.next_back_unchecked() }; Some((k, v)) // coerce k from `&mut K` to `&K` } } } #[stable(feature = "fused", since = "1.26.0")] impl<K, V> FusedIterator for RangeMut<'_, K, V> {} impl<'a, K, V> RangeMut<'a, K, V> { unsafe fn next_back_unchecked(&mut self) -> (&'a mut K, &'a mut V) { unwrap_unchecked(self.back.as_mut()).next_back_unchecked() } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> { fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> { let mut map = BTreeMap::new(); map.extend(iter); map } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Ord, V> Extend<(K, V)> for BTreeMap<K, V> { #[inline] fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) { iter.into_iter().for_each(move |(k, v)| { self.insert(k, v); }); } } #[stable(feature = "extend_ref", since = "1.2.0")] impl<'a, K: Ord + Copy, V: Copy> Extend<(&'a K, &'a V)> for BTreeMap<K, V> { fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) { self.extend(iter.into_iter().map(|(&key, &value)| (key, value))); } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Hash, V: Hash> Hash for BTreeMap<K, V> { fn hash<H: Hasher>(&self, state: &mut H) { for elt in self { elt.hash(state); } } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Ord, V> Default for BTreeMap<K, V> { /// Creates an empty `BTreeMap<K, V>`. fn default() -> BTreeMap<K, V> { BTreeMap::new() } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: PartialEq, V: PartialEq> PartialEq for BTreeMap<K, V> { fn eq(&self, other: &BTreeMap<K, V>) -> bool { self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b) } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Eq, V: Eq> Eq for BTreeMap<K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<K: PartialOrd, V: PartialOrd> PartialOrd for BTreeMap<K, V> { #[inline] fn partial_cmp(&self, other: &BTreeMap<K, V>) -> Option<Ordering> { self.iter().partial_cmp(other.iter()) } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Ord, V: Ord> Ord for BTreeMap<K, V> { #[inline] fn cmp(&self, other: &BTreeMap<K, V>) -> Ordering { self.iter().cmp(other.iter()) } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Debug, V: Debug> Debug for BTreeMap<K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl<K: Ord, Q: ?Sized, V> Index<&Q> for BTreeMap<K, V> where K: Borrow<Q>, Q: Ord, { type Output = V; /// Returns a reference to the value corresponding to the supplied key. /// /// # Panics /// /// Panics if the key is not present in the `BTreeMap`. #[inline] fn index(&self, key: &Q) -> &V { self.get(key).expect("no entry found for key") } } fn range_search<BorrowType, K, V, Q: ?Sized, R: RangeBounds<Q>>( root1: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, root2: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, range: R, ) -> ( Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>, Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>, ) where Q: Ord, K: Borrow<Q>, { match (range.start_bound(), range.end_bound()) { (Excluded(s), Excluded(e)) if s == e => { panic!("range start and end are equal and excluded in BTreeMap") } (Included(s), Included(e)) | (Included(s), Excluded(e)) | (Excluded(s), Included(e)) | (Excluded(s), Excluded(e)) if s > e => { panic!("range start is greater than range end in BTreeMap") } _ => {} }; let mut min_node = root1; let mut max_node = root2; let mut min_found = false; let mut max_found = false; loop { let front = match (min_found, range.start_bound()) { (false, Included(key)) => match search::search_node(min_node, key) { Found(kv) => { min_found = true; kv.left_edge() } GoDown(edge) => edge, }, (false, Excluded(key)) => match search::search_node(min_node, key) { Found(kv) => { min_found = true; kv.right_edge() } GoDown(edge) => edge, }, (true, Included(_)) => min_node.last_edge(), (true, Excluded(_)) => min_node.first_edge(), (_, Unbounded) => min_node.first_edge(), }; let back = match (max_found, range.end_bound()) { (false, Included(key)) => match search::search_node(max_node, key) { Found(kv) => { max_found = true; kv.right_edge() } GoDown(edge) => edge, }, (false, Excluded(key)) => match search::search_node(max_node, key) { Found(kv) => { max_found = true; kv.left_edge() } GoDown(edge) => edge, }, (true, Included(_)) => max_node.first_edge(), (true, Excluded(_)) => max_node.last_edge(), (_, Unbounded) => max_node.last_edge(), }; if front.partial_cmp(&back) == Some(Ordering::Greater) { panic!("Ord is ill-defined in BTreeMap range"); } match (front.force(), back.force()) { (Leaf(f), Leaf(b)) => { return (f, b); } (Internal(min_int), Internal(max_int)) => { min_node = min_int.descend(); max_node = max_int.descend(); } _ => unreachable!("BTreeMap has different depths"), }; } } impl<K, V> BTreeMap<K, V> { /// Gets an iterator over the entries of the map, sorted by key. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert(3, "c"); /// map.insert(2, "b"); /// map.insert(1, "a"); /// /// for (key, value) in map.iter() { /// println!("{}: {}", key, value); /// } /// /// let (first_key, first_value) = map.iter().next().unwrap(); /// assert_eq!((*first_key, *first_value), (1, "a")); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<'_, K, V> { Iter { range: Range { front: self.root.as_ref().map(|r| r.as_ref().first_leaf_edge()), back: self.root.as_ref().map(|r| r.as_ref().last_leaf_edge()), }, length: self.length, } } /// Gets a mutable iterator over the entries of the map, sorted by key. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map = BTreeMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // add 10 to the value if the key isn't "a" /// for (key, value) in map.iter_mut() { /// if key != &"a" { /// *value += 10; /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { IterMut { range: if let Some(root) = &mut self.root { let root1 = root.as_mut(); let root2 = unsafe { ptr::read(&root1) }; RangeMut { front: Some(root1.first_leaf_edge()), back: Some(root2.last_leaf_edge()), _marker: PhantomData, } } else { RangeMut { front: None, back: None, _marker: PhantomData } }, length: self.length, } } /// Gets an iterator over the keys of the map, in sorted order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// a.insert(2, "b"); /// a.insert(1, "a"); /// /// let keys: Vec<_> = a.keys().cloned().collect(); /// assert_eq!(keys, [1, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn keys(&self) -> Keys<'_, K, V> { Keys { inner: self.iter() } } /// Gets an iterator over the values of the map, in order by key. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// a.insert(1, "hello"); /// a.insert(2, "goodbye"); /// /// let values: Vec<&str> = a.values().cloned().collect(); /// assert_eq!(values, ["hello", "goodbye"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn values(&self) -> Values<'_, K, V> { Values { inner: self.iter() } } /// Gets a mutable iterator over the values of the map, in order by key. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// a.insert(1, String::from("hello")); /// a.insert(2, String::from("goodbye")); /// /// for value in a.values_mut() { /// value.push_str("!"); /// } /// /// let values: Vec<String> = a.values().cloned().collect(); /// assert_eq!(values, [String::from("hello!"), /// String::from("goodbye!")]); /// ``` #[stable(feature = "map_values_mut", since = "1.10.0")] pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { ValuesMut { inner: self.iter_mut() } } /// Returns the number of elements in the map. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// assert_eq!(a.len(), 0); /// a.insert(1, "a"); /// assert_eq!(a.len(), 1); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.length } /// Returns `true` if the map contains no elements. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BTreeMap; /// /// let mut a = BTreeMap::new(); /// assert!(a.is_empty()); /// a.insert(1, "a"); /// assert!(!a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// If the root node is the empty (non-allocated) root node, allocate our /// own node. fn ensure_root_is_owned(&mut self) -> &mut node::Root<K, V> { self.root.get_or_insert_with(node::Root::new_leaf) } } impl<'a, K: Ord, V> Entry<'a, K, V> { /// Ensures a value is in the entry by inserting the default if empty, and returns /// a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn or_insert(self, default: V) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(default), } } /// Ensures a value is in the entry by inserting the result of the default function if empty, /// and returns a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, String> = BTreeMap::new(); /// let s = "hoho".to_string(); /// /// map.entry("poneyland").or_insert_with(|| s); /// /// assert_eq!(map["poneyland"], "hoho".to_string()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(default()), } } /// Returns a reference to this entry's key. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { match *self { Occupied(ref entry) => entry.key(), Vacant(ref entry) => entry.key(), } } /// Provides in-place mutable access to an occupied entry before any /// potential inserts into the map. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// /// map.entry("poneyland") /// .and_modify(|e| { *e += 1 }) /// .or_insert(42); /// assert_eq!(map["poneyland"], 42); /// /// map.entry("poneyland") /// .and_modify(|e| { *e += 1 }) /// .or_insert(42); /// assert_eq!(map["poneyland"], 43); /// ``` #[stable(feature = "entry_and_modify", since = "1.26.0")] pub fn and_modify<F>(self, f: F) -> Self where F: FnOnce(&mut V), { match self { Occupied(mut entry) => { f(entry.get_mut()); Occupied(entry) } Vacant(entry) => Vacant(entry), } } } impl<'a, K: Ord, V: Default> Entry<'a, K, V> { #[stable(feature = "entry_or_default", since = "1.28.0")] /// Ensures a value is in the entry by inserting the default value if empty, /// and returns a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, Option<usize>> = BTreeMap::new(); /// map.entry("poneyland").or_default(); /// /// assert_eq!(map["poneyland"], None); /// ``` pub fn or_default(self) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(Default::default()), } } } impl<'a, K: Ord, V> VacantEntry<'a, K, V> { /// Gets a reference to the key that would be used when inserting a value /// through the VacantEntry. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { &self.key } /// Take ownership of the key. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// /// if let Entry::Vacant(v) = map.entry("poneyland") { /// v.into_key(); /// } /// ``` #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] pub fn into_key(self) -> K { self.key } /// Sets the value of the entry with the `VacantEntry`'s key, /// and returns a mutable reference to it. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut count: BTreeMap<&str, usize> = BTreeMap::new(); /// /// // count the number of occurrences of letters in the vec /// for x in vec!["a","b","a","c","a","b"] { /// *count.entry(x).or_insert(0) += 1; /// } /// /// assert_eq!(count["a"], 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(self, value: V) -> &'a mut V { *self.length += 1; let out_ptr; let mut ins_k; let mut ins_v; let mut ins_edge; let mut cur_parent = match self.handle.insert(self.key, value) { (Fit(handle), _) => return handle.into_kv_mut().1, (Split(left, k, v, right), ptr) => { ins_k = k; ins_v = v; ins_edge = right; out_ptr = ptr; left.ascend().map_err(|n| n.into_root_mut()) } }; loop { match cur_parent { Ok(parent) => match parent.insert(ins_k, ins_v, ins_edge) { Fit(_) => return unsafe { &mut *out_ptr }, Split(left, k, v, right) => { ins_k = k; ins_v = v; ins_edge = right; cur_parent = left.ascend().map_err(|n| n.into_root_mut()); } }, Err(root) => { root.push_level().push(ins_k, ins_v, ins_edge); return unsafe { &mut *out_ptr }; } } } } } impl<'a, K: Ord, V> OccupiedEntry<'a, K, V> { /// Gets a reference to the key in the entry. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { self.handle.reborrow().into_kv().0 } /// Take ownership of the key and value from the map. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// // We delete the entry from the map. /// o.remove_entry(); /// } /// /// // If now try to get the value, it will panic: /// // println!("{}", map["poneyland"]); /// ``` #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] pub fn remove_entry(self) -> (K, V) { self.remove_kv() } /// Gets a reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// assert_eq!(o.get(), &12); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn get(&self) -> &V { self.handle.reborrow().into_kv().1 } /// Gets a mutable reference to the value in the entry. /// /// If you need a reference to the `OccupiedEntry` that may outlive the /// destruction of the `Entry` value, see [`into_mut`]. /// /// [`into_mut`]: #method.into_mut /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// if let Entry::Occupied(mut o) = map.entry("poneyland") { /// *o.get_mut() += 10; /// assert_eq!(*o.get(), 22); /// /// // We can use the same Entry multiple times. /// *o.get_mut() += 2; /// } /// assert_eq!(map["poneyland"], 24); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self) -> &mut V { self.handle.kv_mut().1 } /// Converts the entry into a mutable reference to its value. /// /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. /// /// [`get_mut`]: #method.get_mut /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// if let Entry::Occupied(o) = map.entry("poneyland") { /// *o.into_mut() += 10; /// } /// assert_eq!(map["poneyland"], 22); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn into_mut(self) -> &'a mut V { self.handle.into_kv_mut().1 } /// Sets the value of the entry with the `OccupiedEntry`'s key, /// and returns the entry's old value. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(mut o) = map.entry("poneyland") { /// assert_eq!(o.insert(15), 12); /// } /// assert_eq!(map["poneyland"], 15); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, value: V) -> V { mem::replace(self.get_mut(), value) } /// Takes the value of the entry out of the map, and returns it. /// /// # Examples /// /// ``` /// use std::collections::BTreeMap; /// use std::collections::btree_map::Entry; /// /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// assert_eq!(o.remove(), 12); /// } /// // If we try to get "poneyland"'s value, it'll panic: /// // println!("{}", map["poneyland"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(self) -> V { self.remove_kv().1 } fn remove_kv(self) -> (K, V) { *self.length -= 1; let (old_key, old_val, _) = self.handle.remove_kv_tracking(); (old_key, old_val) } } impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV> { /// Removes a key/value-pair from the map, and returns that pair, as well as /// the leaf edge corresponding to that former pair. fn remove_kv_tracking( self, ) -> (K, V, Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>) { let (mut pos, old_key, old_val, was_internal) = match self.force() { Leaf(leaf) => { let (hole, old_key, old_val) = leaf.remove(); (hole, old_key, old_val, false) } Internal(mut internal) => { // Replace the location freed in the internal node with the next KV, // and remove that next KV from its leaf. let key_loc = internal.kv_mut().0 as *mut K; let val_loc = internal.kv_mut().1 as *mut V; // Deleting from the left side is typically faster since we can // just pop an element from the end of the KV array without // needing to shift the other values. let to_remove = internal.left_edge().descend().last_leaf_edge().left_kv().ok(); let to_remove = unsafe { unwrap_unchecked(to_remove) }; let (hole, key, val) = to_remove.remove(); let old_key = unsafe { mem::replace(&mut *key_loc, key) }; let old_val = unsafe { mem::replace(&mut *val_loc, val) }; (hole, old_key, old_val, true) } }; // Handle underflow let mut cur_node = unsafe { ptr::read(&pos).into_node().forget_type() }; let mut at_leaf = true; while cur_node.len() < node::MIN_LEN { match handle_underfull_node(cur_node) { AtRoot(_) => break, EmptyParent(_) => unreachable!(), Merged(edge, merged_with_left, offset) => { // If we merged with our right sibling then our tracked // position has not changed. However if we merged with our // left sibling then our tracked position is now dangling. if at_leaf && merged_with_left { let idx = pos.idx() + offset; let node = match unsafe { ptr::read(&edge).descend().force() } { Leaf(leaf) => leaf, Internal(_) => unreachable!(), }; debug_assert!(idx <= node.len()); pos = unsafe { Handle::new_edge(node, idx) }; } let parent = edge.into_node(); if parent.len() == 0 { // We must be at the root parent.into_root_mut().pop_level(); break; } else { cur_node = parent.forget_type(); at_leaf = false; } } Stole(_, stole_from_left) => { // Adjust the tracked position if we stole from a left sibling if stole_from_left && at_leaf { // SAFETY: This is safe since we just added an element to our node. unsafe { pos.next_unchecked(); } } // This internal node might be underfull, but only if it's the root. break; } } } // If we deleted from an internal node then we need to compensate for // the earlier swap and adjust the tracked position to point to the // next element. if was_internal { pos = unsafe { unwrap_unchecked(pos.next_kv().ok()).next_leaf_edge() }; } (old_key, old_val, pos) } } enum UnderflowResult<'a, K, V> { AtRoot(NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>), EmptyParent(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), Merged(Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge>, bool, usize), Stole(NodeRef<marker::Mut<'a>, K, V, marker::Internal>, bool), } fn handle_underfull_node<K, V>( node: NodeRef<marker::Mut<'_>, K, V, marker::LeafOrInternal>, ) -> UnderflowResult<'_, K, V> { let parent = match node.ascend() { Ok(parent) => parent, Err(root) => return AtRoot(root), }; let (is_left, mut handle) = match parent.left_kv() { Ok(left) => (true, left), Err(parent) => match parent.right_kv() { Ok(right) => (false, right), Err(parent) => { return EmptyParent(parent.into_node()); } }, }; if handle.can_merge() { let offset = if is_left { handle.reborrow().left_edge().descend().len() + 1 } else { 0 }; Merged(handle.merge(), is_left, offset) } else { if is_left { handle.steal_left(); } else { handle.steal_right(); } Stole(handle.into_node(), is_left) } } impl<K: Ord, V, I: Iterator<Item = (K, V)>> Iterator for MergeIter<K, V, I> { type Item = (K, V); fn next(&mut self) -> Option<(K, V)> { let res = match (self.left.peek(), self.right.peek()) { (Some(&(ref left_key, _)), Some(&(ref right_key, _))) => left_key.cmp(right_key), (Some(_), None) => Ordering::Less, (None, Some(_)) => Ordering::Greater, (None, None) => return None, }; // Check which elements comes first and only advance the corresponding iterator. // If two keys are equal, take the value from `right`. match res { Ordering::Less => self.left.next(), Ordering::Greater => self.right.next(), Ordering::Equal => { self.left.next(); self.right.next() } } } }